\chapter{Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}
\label{ch5}
-\iffalse
-
-\section{Summary}
-\label{ch5:sec:01}
-Coverage and lifetime are two paramount problems in Wireless Sensor Networks (WSNs). In this paper, a method called Multiround Distributed Lifetime Coverage
-Optimization protocol (MuDiLCO) is proposed to maintain the coverage and to improve the lifetime in wireless sensor networks. The area of interest is first
-divided into subregions and then the MuDiLCO protocol is distributed on the sensor nodes in each subregion. The proposed MuDiLCO protocol works in periods
-during which sets of sensor nodes are scheduled to remain active for a number of rounds during the sensing phase, to ensure coverage so as to maximize the
-lifetime of WSN. The decision process is carried out by a leader node, which solves an integer program to produce the best representative sets to be used
-during the rounds of the sensing phase. Compared with some existing protocols, simulation results based on multiple criteria (energy consumption, coverage
-ratio, and so on) show that the proposed protocol can prolong efficiently the network lifetime and improve the coverage performance.
-
-\fi
\section{Introduction}
\label{ch5:sec:01}
\BlankLine
%\emph{Initialize the sensor node and determine it's position and subregion} \;
- \If{ $RE_j \geq E_{R}$ }{
+ \If{ $RE_j \geq E_{th}$ }{
\emph{$s_j.status$ = COMMUNICATION}\;
\emph{Send $INFO()$ packet to other nodes in the subregion}\;
\emph{Wait $INFO()$ packet from other nodes in the subregion}\;
\end{equation}
\begin{equation}
- \sum_{t=1}^{T} X_{t,j} \leq \lfloor {RE_{j}/E_{R}} \rfloor \hspace{6 mm} \forall j \in J, t = 1,\dots,T
+ \sum_{t=1}^{T} X_{t,j} \leq \lfloor {RE_{j}/E_{th}} \rfloor \hspace{6 mm} \forall j \in J, t = 1,\dots,T
\label{eq144}
\end{equation}
and undercoverage variables help balancing the restriction equations by taking
positive values. The constraint given by equation~(\ref{eq144}) guarantees that
the sensor has enough energy ($RE_j$ corresponds to its remaining energy) to be
-alive during the selected rounds knowing that $E_{R}$ is the amount of energy
+alive during the selected rounds knowing that $E_{th}$ is the amount of energy
required to be alive during one round.
There are two main objectives. First, we limit the overcoverage of primary
\label{ch5:sec:04:01}
We conducted a series of simulations to evaluate the efficiency and the
relevance of our approach, using the discrete event simulator OMNeT++
-\cite{ref158}. The simulation parameters are summarized in Table~\ref{table3}. Each experiment for a network is run over 25~different random topologies and the results presented hereafter are the average of these
-25 runs.
+\cite{ref158}. The simulation parameters are summarized in Table~\ref{table3}. Each experiment for a network is run over 25~different random topologies and the results presented hereafter are the average of these 25 runs.
%Based on the results of our proposed work in~\cite{idrees2014coverage}, we found as the region of interest are divided into larger subregions as the network lifetime increased. In this simulation, the network are divided into 16 subregions.
We performed simulations for five different densities varying from 50 to
250~nodes deployed over a $50 \times 25~m^2 $ sensing field. More
Initial energy & 500-700~joules \\
%\hline
Sensing time for one round & 60 Minutes \\
-$E_{R}$ & 36 Joules\\
+$E_{th}$ & 36 Joules\\
$R_s$ & 5~m \\
%\hline
$W_{\Theta}$ & 1 \\
We used the modeling language and the optimization solver which are mentioned in chapter 4, section \ref{ch4:sec:04:02}. In addition, we employed an energy consumption model, which is presented in chapter 4, section \ref{ch4:sec:04:03}.
-%The initial energy of each node is randomly set in the interval $[500;700]$. A sensor node will not participate in the next round if its remaining energy is less than $E_{R}=36~\mbox{Joules}$, the minimum energy needed for the node to stay alive during one round. This value has been computed by multiplying the energy consumed in active state (9.72 mW) by the time in second for one round (3600 seconds). According to the interval of initial energy, a sensor may be alive during at most 20 rounds.
+%The initial energy of each node is randomly set in the interval $[500;700]$. A sensor node will not participate in the next round if its remaining energy is less than $E_{th}=36~\mbox{Joules}$, the minimum energy needed for the node to stay alive during one round. This value has been computed by multiplying the energy consumed in active state (9.72 mW) by the time in second for one round (3600 seconds). According to the interval of initial energy, a sensor may be alive during at most 20 rounds.
\subsection{Metrics}
\label{ch5:sec:04:02}