X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAli.git/blobdiff_plain/00b2eae97f8480bf95d41419fb7277907fac6023..a1ce01d485446da92069b5d68b1ed880ee49f69b:/CHAPITRE_01.tex?ds=inline diff --git a/CHAPITRE_01.tex b/CHAPITRE_01.tex index 971dbeb..a70a010 100644 --- a/CHAPITRE_01.tex +++ b/CHAPITRE_01.tex @@ -27,7 +27,9 @@ In recent years, there is increasing interest in Wireless Sensor Networks (WSNs) \section{Wireless Sensor Network Architecture} \label{ch1:sec:02} -In a typical WSN architecture, the basic element is a typical wireless sensor node that composed of four major units~\cite{ref17,ref18}: sensing unit, computation unit, communication unit, and power unit. In addition, there are three optional units, which can be combined with the sensor node such as: localization system, mobilizer, and power generator. Figure~\ref{twsn} shows the components of a typical wireless sensor node~\cite{ref17}. +A typical WSN architecture consists of a set of a typical wireless sensor nodes, which are capable of sensing the physical phenomenon around it such as fire in the forest (see~figure~\ref{wsn}), and then send the sensed data to a controller node called a sink. One or more sink in WSN are responsible for collecting and processing the sensed data by the wireless sensors, and then send it through the Internet to the end user. + +In those WSN architecture, the basic element is a typical wireless sensor node that composed of four major units~\cite{ref17,ref18}: sensing unit, computation unit, communication unit, and power unit. In addition, there are three optional units, which can be combined with the sensor node such as: localization system, mobilizer, and power generator. Figure~\ref{twsn} shows the components of a typical wireless sensor node~\cite{ref17}. \begin{figure}[h!] \centering @@ -55,9 +57,6 @@ Furthermore, additional components can be incorporated into wireless sensor node \item \textbf{Power Generator:} Several WSN applications need to operate for a longer time, so it is essential to equip the wireless sensor node with additional power source in order to prolong the network lifetime. The better energy source to generate the power for outdoor applications is a solar cells. An another power harvesting mechanisims~\cite{ref20,ref21} for thermal, motion, vibration, micro water flow, Biological, pressure gradients, and electromagnetic radiation energy harvesting can be used that yield increasing power output to extend the network lifetime. \end{enumerate} -The TinyOS has been used as an operating system in wireless sensor node. It is developed by the university of California, Berkeley and designed to work on platforms with limited storage and processing power. - -A typical WSN architecture consists of a set of a typical wireless sensor nodes, which are capable of sensing the phenomenon of interest around it such as fire in the forest (see~figure~\ref{wsn}) and then send the sensed data to a controller node called a sink. One or more sink in WSN are responsible for collecting and processing the sensed data by the wireless sensors, and then send it through the Internet to the end user. \begin{figure}[h!] \centering \includegraphics[scale=0.9]{Figures/ch1/wsn.jpg} @@ -65,6 +64,8 @@ A typical WSN architecture consists of a set of a typical wireless sensor nodes, \label{wsn} \end{figure} +The TinyOS has been used as an operating system in wireless sensor node. It is developed by the university of California, Berkeley and designed to work on platforms with limited storage and processing power. + \section{Types of Wireless Sensor Networks} \label{ch1:sec:03}