X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAli.git/blobdiff_plain/508b0afd303ff3341d65be0960746229924e9863..69df7ec45b058605689f892e87e7a7961e748742:/Abstruct.tex?ds=sidebyside diff --git a/Abstruct.tex b/Abstruct.tex index cfa6033..c8e686d 100644 --- a/Abstruct.tex +++ b/Abstruct.tex @@ -36,7 +36,7 @@ during which sets of sensor nodes are scheduled to remain active for a number of Last but not least, we propose a Perimeter-based Coverage Optimization (PeCO) protocol which is also distributed among sensor nodes in each subregion.The novelty of our approach lies essentially in the formulation of a new mathematical optimization model based on a perimeter coverage level to schedule sensors' activities, whereas we used primary points coverage model in the two previous models. A new integer program coverage model is solved by the leader during the decision phase so as to provide only one cover set of sensors for the sensing phase. -Extensive simulations are conducted using the discrete event simulator OMNET++ to validate the efficiency of each of our proposed protocols. We refer to the characteristics of a Medusa II sensor for the energy consumption and the time computation. In comparison with two other existing methods, our protocols are able to increase +Extensive simulations are conducted using the discrete event simulator OMNeT++ to validate the efficiency of each of our proposed protocols. We refer to the characteristics of a Medusa II sensor for the energy consumption and the time computation. In comparison with two other existing methods, our protocols are able to increase the WSN lifetime and provide improved coverage performance.