X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAli.git/blobdiff_plain/bef8475407e8dab9352fe300765cf553b56e4c9d..09d036d7e4b0662f9b52cc226c174cb79b096eb7:/CHAPITRE_02.tex?ds=inline diff --git a/CHAPITRE_02.tex b/CHAPITRE_02.tex index 73e685f..b306630 100755 --- a/CHAPITRE_02.tex +++ b/CHAPITRE_02.tex @@ -92,17 +92,17 @@ Their work builds upon previous work in~\cite{ref116} and the generated cover s The authors in~\cite{ref115} proposed a heuristic to compute the disjoint set covers (DSC). In order to compute the maximum number of covers, they first transform DSC into a maximum-flow problem, which is then formulated as a mixed integer programming problem (MIP). Based on the solution of the MIP, they design a heuristic to compute the final number of covers. The results show a slight performance improvement in terms of the number of produced DSC in comparison to~\cite{ref116}, but it incurs higher execution time due to the complexity of the mixed integer programming solving. Zorbas et al. \cite{ref228} presented B\{GOP\}, a centralized target coverage algorithm introducing sensor candidate categorization depending on their coverage status and the notion of critical target to call targets that are associated with a small number of sensors. The total running time of their heuristic is $0(m n^2)$ where -$n$ is the number of sensors and $m$ the number of targets. Compared to algorithm's results of Slijepcevic and Potkonjak \cite{ref116}, their heuristic produces more cover sets with a slight growth rate in execution time. +$n$ is the number of sensors and $m$ the number of targets. Compared to algorithm's results of Slijepcevic and Potkonjak \cite{ref116}, their heuristic produces more cover sets with a slight growth rate in execution time. More recently, Deschinkel and Hakem \cite{229} introduced a near-optimal heuristic algorithm for solving the target coverage problem in WSN. The sensor nodes are organized into disjoint cover sets by the resolution an integer programming problem. Each cover set is capable of monitoring all the targets of the region of interest. Those covers sets are scheduled periodically. Their algorithm able to construct the different cover sets in parallel. The results show that their algorithm achieves near-optimal solutions compared to the optimal ones obtained by the exact method. - - - - - -In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets. +In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets. For instance, Cardei et al.~\cite{ref167} +present a linear programming (LP) solution and a greedy approach to +extend the sensor network lifetime by organizing the sensors into a +maximal number of non-disjoint cover sets. Simulation results show +that by allowing sensors to participate in multiple sets, the network +lifetime increases compared with related work~\cite{ref115}.