]> AND Private Git Repository - ThesisAli.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Update by Ali
authorali <ali@ali>
Fri, 30 Jan 2015 11:02:09 +0000 (12:02 +0100)
committerali <ali@ali>
Fri, 30 Jan 2015 11:02:09 +0000 (12:02 +0100)
CHAPITRE_01.tex

index ddbf3fdd49611383cdb39721dfa011ad398027da..64f492942926cfdb735e2d60ec3161e60d51d5b5 100644 (file)
@@ -237,11 +237,11 @@ nodes in order to achieve their tasks efficiently.
 \begin{enumerate} [(i)]
 \item Neighbor-coordinated in which the wireless sensor node generates its own wake up schedule taking into consideration the wake up schedules of its neighbor sensor nodes. 
 %The protocols that used this approach like : S-MAC protocol, Timeout MAC (T-MAC), Pattern-MAC (PMAC), Dynamic S-MAC (DSMAC), and ESC; 
 \begin{enumerate} [(i)]
 \item Neighbor-coordinated in which the wireless sensor node generates its own wake up schedule taking into consideration the wake up schedules of its neighbor sensor nodes. 
 %The protocols that used this approach like : S-MAC protocol, Timeout MAC (T-MAC), Pattern-MAC (PMAC), Dynamic S-MAC (DSMAC), and ESC; 
-\item Path-coordinated is suggested to allow the wireless sensor nodes along the path to collaborate to manage their wake up schedules so as to permit to packets passing on the path without delay. The sleep interval represents the main problem for the duty-cycling WSNs that participating in end-to-end delay. 
+\item Path-coordinated is suggested to allow the wireless sensor nodes along the path to collaborate to manage their wake up schedules so as to permit to packets passing on the path without delay.  
 %Some examples  used this approach~\cite{ref65,ref66,ref67}; 
 \item Network-coordinated: the wireless sensor nodes are cooperated in order to produce a global or per sensor node wake up schedule that achieves a specific objectives.  These schemes can be centralized in which one sensor node responsible of constructing the wakeup schedule for a subset or all nodes in WSN; or distributed in which every wireless sensor node in the network contributes in the production of their wakeup schedules.  
 %Instances that used this approach in~\cite{ref68,ref69}; 
 %Some examples  used this approach~\cite{ref65,ref66,ref67}; 
 \item Network-coordinated: the wireless sensor nodes are cooperated in order to produce a global or per sensor node wake up schedule that achieves a specific objectives.  These schemes can be centralized in which one sensor node responsible of constructing the wakeup schedule for a subset or all nodes in WSN; or distributed in which every wireless sensor node in the network contributes in the production of their wakeup schedules.  
 %Instances that used this approach in~\cite{ref68,ref69}; 
-\item Non-collaborative: in this schemes, the wireless sensor node applies control theory, or other tools, which are based on local information inside the sensor node (such as queue length or duty cycle). i.e., It does not use the information from the other nodes in order to construct its own wake up schedule. 
+\item Non-collaborative: in these schemes, the wireless sensor node applies control theory, or other mechanisms, which are based on local information inside the sensor node (such as queue length or duty cycle). i.e., It does not use the information from the other nodes in order to construct its own wake up schedule. 
 %Some examples that used these schemes~\cite{ref70,ref71}.
 \end{enumerate}
 
 %Some examples that used these schemes~\cite{ref70,ref71}.
 \end{enumerate}
 
@@ -250,18 +250,20 @@ nodes in order to achieve their tasks efficiently.
  
 \end{enumerate}
 
  
 \end{enumerate}
 
-\item \textbf{Asynchronous Schemes:} The time among the wireless sensor nodes do not needs synchronization. The wireless sensor node wake up to send packets with out taking into account whether the receiving sensor nodes are wake up and ready to receive. The major advantages received from these schemes in that they do not need time synchronization that lead to remove the energy consumption required by applying the periodic resynchronization of time among the sensor nodes~\cite{ref74}. Another benefit come from using the asynchronous schemes that they do not need high exploitation for wireless sensor resources (processing, memory, and radio) because there is no shared wake up schedules to be exchanged or saved in the memory. Therefore,  exchanging the packets among the wireless sensor nodes, which are not aware of each other's wake up schedules have been considered a major challenge in asynchronous schemes. These schemes can be categorized into three groups~\cite{ref57}: 
+\item \textbf{Asynchronous Schemes:} The time among the wireless sensor nodes does not need synchronization. The wireless sensor node wake up to send packets without taking into account whether the receiving sensor nodes are wake up and ready to receive. The major advantage is received by these schemes in that they do not need time synchronization that lead to remove the energy consumption is required to apply the periodic time resynchronization among the sensor nodes~\cite{ref74}. Another advantage of using the asynchronous schemes in that they do not need to exploit the limited resources (processing, memory, and radio) of the sensor nodes because there is no  shared wake up schedules to be exchanged or saved in the memory. Therefore,  exchanging the packets among the wireless sensor nodes, which are not aware of each other's wake up schedules have been considered a major challenge in asynchronous schemes. These schemes can be categorized into three groups~\cite{ref57}: 
  
 \begin{enumerate} [(A)]
 \item Transmitter-initiated: a special frame is sent by the transmitting sensor node to inform the receiving sensor node that it has a data frame to send.  If the receiving sensor node is hearing the the special frame during one of its wake up intervals, it waits for sending the data frame. The major advantages of these schemes represented by the low requirement of the memory and processing whilst the major disadvantages are low-duty cycle and the sleep latency is non-deterministic. 
 %Examples on these schemes in~\cite{ref75,ref76}.
  
 \begin{enumerate} [(A)]
 \item Transmitter-initiated: a special frame is sent by the transmitting sensor node to inform the receiving sensor node that it has a data frame to send.  If the receiving sensor node is hearing the the special frame during one of its wake up intervals, it waits for sending the data frame. The major advantages of these schemes represented by the low requirement of the memory and processing whilst the major disadvantages are low-duty cycle and the sleep latency is non-deterministic. 
 %Examples on these schemes in~\cite{ref75,ref76}.
-\item Receiver-initiated: during each wake up time interval of receiving wireless sensor node, it sends a special frame to inform the senders that it is wake up and ready to receive the data frames.  When the sensor node has a packet to send it wakes up and wait receiving special frame from neighboring sensor nodes. The waiting sensor node is sending its data frame at the moment of receiving the special frame from the neighbor sensor node. The main advantages are a  low processing and storage requirement whilst the disadvantage of these schemes are the low performance during low and high duty cycle as well as their sleep latency is stochastic. 
+
+\item Receiver-initiated: during each wake up time interval of receiving wireless sensor node, it sends a special frame to inform the senders, which are waked up and ready to receive the data frames.  When the sensor node has a packet to send it wakes up and wait receiving special frame from neighboring sensor nodes. The waiting sensor node is sending its data frame at the moment of receiving the special frame from the neighbor sensor node. The main advantages are a low processing and storage requirement whilst the disadvantage of these schemes are the low performance during low and high duty cycle as well as their sleep latency is stochastic. 
 %The works that proposed in~\cite{ref77,ref78} represents some instances for these approaches.
 %The works that proposed in~\cite{ref77,ref78} represents some instances for these approaches.
-\item Combinatorial or random: during the wake up duration, one or more data packets can be exchanged among the wireless sensor nodes. The data packets are exchanged among the wireless sensor nodes are increased as the wake up time increased. In this schemes, the special frames are removed and the energy consumption is decreased. 
+
+\item Combinatorial or random: during the wake up duration, one or more data packets can be exchanged among the wireless sensor nodes. The data packets are exchanged among the wireless sensor nodes are increased as the wake up time increased. In these schemes, the special frames are removed and the energy consumption is decreased. 
 %The proposed works in~\cite{ref81,ref82,ref83} give an instances for these schemes.
 \end{enumerate}
  
 %The proposed works in~\cite{ref81,ref82,ref83} give an instances for these schemes.
 \end{enumerate}
  
-\item \textbf{Hybrids schemes:} Some schemes need to use both time synchronous and Asynchronous methods. According to WSN circumstances, the wake up scheduling switches between synchronous and asynchronous modes, where the synchronous schemes work efficiently in the heavy load circumstances whilst in the light load circumstances, the asynchronous schemes are more efficient. 
+\item \textbf{Hybrids Schemes:} Some schemes need to use both time synchronous and asynchronous methods. According to WSN circumstances, the wake up scheduling switches between synchronous and asynchronous modes, where the synchronous schemes work efficiently in the heavy load circumstances whilst in the light load circumstances, the asynchronous schemes are more efficient. 
 %The protocols in~\cite{ref79,ref80} are an examples on these schemes.
 \end{enumerate}
 
 %The protocols in~\cite{ref79,ref80} are an examples on these schemes.
 \end{enumerate}
 
@@ -269,25 +271,25 @@ nodes in order to achieve their tasks efficiently.
 
 \subsubsection{Topology Control Schemes:}
 
 
 \subsubsection{Topology Control Schemes:}
 
-\indent The topology control schemes are dealing with the redundancy in the WSNs. The WSN are always deploying with high density and in a random way, where a large number of wireless sensor nodes are usually throwing by the airplane over the area of interest. The purpose of deploying a dense WSN is to cope with the sensor failure during or after the WSN deployment and to maximize the network lifetime by means of exploiting the overlapping among the sensor nodes in the network by putting the redundant sensor nodes into sleep mode in order to benefit from it later. The major goal of topology control protocols is to dynamically adapt network topology based on requirements of application so as to minimize the number of active sensor nodes, achieve the tasks of the network, and prolong the network lifetime~\cite{ref56,ref22}. Many factors can be used to decide which sensor nodes should be turned on or off and when. The topology control schemes have been classified into two categories~\cite{ref56}: 
+\indent The topology control schemes deal with the redundancy in the WSNs. The WSN are always deploying with high density and in a random way, where a large number of wireless sensor nodes are usually throwing by the airplane over the area of interest. The purpose of deploying a dense WSN is to cope with the sensor failure during or after the WSN deployment and to maximize the network lifetime by means of exploiting the overlapping among the sensor nodes in the network by putting the redundant sensor nodes into sleep mode in order to benefit from it later. The major goal of topology control protocols is to dynamically adapt network topology based on requirements of application so as to minimize the number of active sensor nodes, achieve the tasks of the network, and prolong the network lifetime~\cite{ref56,ref22}. Many factors can be used to decide which sensor nodes should be turned on or off and when. The topology control schemes have been classified into two categories~\cite{ref56}: 
  
 \begin{enumerate} [(I)]
  
 \begin{enumerate} [(I)]
-\item \textbf{Location driven protocols} in which determining which wireless sensor node to turn on or off based on its location that should be known, such as Geographical Adaptive Fidelity (GAF) protocol~\cite{ref84}. These schemes are called network coverage that describing how the sensing field is monitored using minimum number of wireless sensor nodes in order to achieve application requirements and prolong the network lifetime~\cite{ref102}.
+\item \textbf{Location Driven Protocols} in which determining which wireless sensor node to turn on or off based on its location that should be known, for example, Geographical Adaptive Fidelity (GAF) protocol~\cite{ref84}. These schemes are called network coverage that describing how the sensing field is monitored using minimum number of wireless sensor nodes in order to achieve application requirements and prolong the network lifetime~\cite{ref102}.
 
 
-\item \textbf{Connectivity driven protocols} in which the wireless sensor nodes are activated or deactivated so that the sensing coverage and WSN connectivity are assured, such as Span protocol~\cite{ref85}.
+\item \textbf{Connectivity Driven Protocols} in which the wireless sensor nodes are activated or deactivated so that the sensing coverage and connectivity of WSN are assured, such as Span protocol~\cite{ref85}.
 \end{enumerate}
 
 
 \subsection{Data-Driven Schemes:}
 
 \end{enumerate}
 
 
 \subsection{Data-Driven Schemes:}
 
-\indent Data driven approaches aim to decrease the amount of data sent to the sink whilst maintaining the accuracy of sensing within acceptable level. So, removing unwanted data during the transmission and restriction the sensing tasks during data acquisition can be participating in reduce the energy consumption in WSNs. 
+\indent Data driven approaches aim to decrease the amount of data sent to the sink whilst maintaining the accuracy of sensing within acceptable level. Therefore, removing unwanted data during the transmission and restriction the sensing tasks during data acquisition can be participating in reduce the energy consumption in WSNs. 
 %Several data-driven schemes have been proposed in~\cite{ref86,ref87,ref88,ref89,ref90}.
 %Several data-driven schemes have been proposed in~\cite{ref86,ref87,ref88,ref89,ref90}.
-Data driven schemes classified into two main approaches~\cite{ref59,ref22}:
+Data driven schemes are classified into two main approaches~\cite{ref59,ref22}:
  
 %\begin{enumerate} [(I)]
  
 %\begin{enumerate} [(I)]
-\subsubsection{Data Reduction Schemes} that deal with reducing the amount of data need to be transmitted to sink. They can be divided into stochastic approaches, time series forecasting and algorithmic approaches. In stochastic approaches, the physical phenomena are transformed using stochastic characterization. the aggregating by these protocols require high processing so it is feasible to work on a powerful sensor nodes with a big battery. In time series forecasting, the old values of periodic sampling can be used to forecast a future value in the same series. In algorithmic approaches, sensed phenomena are demonstrated using heuristic or state transition model. 
+\subsubsection{Data Reduction Schemes} deal with reducing the amount of data need to be transmitted to sink. They can be divided into stochastic approaches, time series forecasting, and algorithmic approaches. In stochastic approaches, the physical phenomena is transformed using stochastic characterization. The aggregation by these protocols requires high processing, therefore it is feasible to work on a powerful sensor nodes with a big battery. In time series forecasting, the old values of periodic sampling can be used to forecast a future value in the same series. In algorithmic approaches, sensed phenomena is demonstrated using heuristic or state transition model. 
 
 
-\subsubsection{Energy Efficient Data Acquisition Schemes} are concentrated on the energy consumption reduction in the sensing unit. These schemes are divided into adaptive sampling, hierarchical sampling and model based active sampling. In adaptive sampling, the amount of data that acquired from the transducer can be reduced by spatial or temporal correlation between data. These approaches are more efficient to be used in centralized fusion but it consumes a high energy due to requiring a high processing. In hierarchical sampling, are more efficient when there are different types of sensor are installed on the nodes. These approaches are more energy efficient and application specific. The model based approaches are similar to data prediction schemes. These approaches aim to decrease the data samples by using computed models and conserve the energy by means of data acquisition. 
+\subsubsection{Energy Efficient Data Acquisition Schemes} are concentrated on the energy consumption reduction in the sensing unit. These schemes are divided into adaptive sampling, hierarchical sampling, and model based active sampling. In adaptive sampling, the amount of data that acquired from the transducer can be reduced by spatial or temporal correlation between data. These approaches are more efficient to be used in centralized fusion, but it consumes more energy due to requiring a high processing. In hierarchical sampling, are more efficient when there are different types of sensor are installed on the nodes. These approaches are more energy efficient and application specific. The model based approaches are similar to data prediction schemes. These approaches aim to decrease the data samples by using computed models and conserve the energy by means of data acquisition. 
 %\end{enumerate} 
 
 
 %\end{enumerate} 
 
 
@@ -310,10 +312,10 @@ direction; and cognitive radio and Cooperative communications schemes~\cite{ref2
 \indent The relay nodes placement and the mobility of the sink can be considered as energy-efficient strategies, which are used to minimize the consumption of the energy and extend the lifetime of WSNs.
 %\begin{enumerate} [(I)]
 \subsubsection{Relay node placement:} 
 \indent The relay nodes placement and the mobility of the sink can be considered as energy-efficient strategies, which are used to minimize the consumption of the energy and extend the lifetime of WSNs.
 %\begin{enumerate} [(I)]
 \subsubsection{Relay node placement:} 
-In WSN, some wireless sensor nodes in a certain region may be died and this will leads to create a hole in the WSN. This problem can be solved by placing the wireless sensor nodes in sensing field using optimal distribution or by deploying a small number of relay wireless sensor nodes with a powerful capabilities whose major goal is the communication with other wireless sensor nodes or relay nodes~\cite{ref52}. This solution can enhance the power balancing and avoiding the overloaded wireless sensor nodes in a particular region in WSN.
+In WSN, some wireless sensor nodes in a certain region may be died and this will lead to create a hole in the WSN. This problem can be solved by placing the wireless sensor nodes in sensing field using optimal distribution or by deploying a small number of relay wireless sensor nodes with a powerful capabilities whose major goal is the communication with other wireless sensor nodes or relay nodes~\cite{ref52}. This solution can enhance the power balancing and avoiding the overloaded wireless sensor nodes in a particular region in WSN.
 
 \subsubsection{Sink Mobility:} 
 
 \subsubsection{Sink Mobility:} 
-In WSNs that included a static sink, the wireless sensor nodes, which are near the sink drain their power more rapidly compared with other sensor nodes that leads to WSN disconnection and limited network lifetime~\cite{ref53}. This is happening due to sending all the data in WSN to the sink that maximizes the overload on the wireless sensor nodes close to sink. In order to overcome this problem and prolong the network lifetime; it is necessary to use a mobile sink to move within the area of WSN so as to collect the sensory data from the static sensor nodes over a single hop communication.  The mobile sink avoids the multi-hop communication and conserves the energy at the static sensor nodes close the base station, extending the lifetime of WSN~\cite{ref54,ref55}.
+In WSNs that included a static sink, the wireless sensor nodes, which are near the sink drain their power more rapidly compared with other sensor nodes that lead to WSN disconnection and limited network lifetime~\cite{ref53}. This is happening due to sending all the data in WSN to the sink that maximizes the overload on the wireless sensor nodes close to sink. In order to overcome this problem and prolong the network lifetime; it is necessary to use a mobile sink to move within the area of WSN so as to collect the sensory data from the static sensor nodes over a single hop communication.  The mobile sink avoids the multi-hop communication and conserves the energy at the static sensor nodes close the base station, extending the lifetime of WSN~\cite{ref54,ref55}.
 
 %\end{enumerate}
 
 
 %\end{enumerate}
 
@@ -324,9 +326,11 @@ In WSNs that included a static sink, the wireless sensor nodes, which are near t
 \label{ch1:sec:07}
 \indent The limited resources in WSNs have been addressed, and one of the main challenges in WSNs is the limited power resource. For this reason, there are extensive researches have been proposed in order to prolong the network lifetime by means of designing and implementing energy-efficient protocols. The reason for these large number of proposed protocols to maximize the network lifetime is the difficulty and sometime impossibility to replace or recharge the batteries of wireless sensor nodes especially in the large WSN and hostile environment. 
 
 \label{ch1:sec:07}
 \indent The limited resources in WSNs have been addressed, and one of the main challenges in WSNs is the limited power resource. For this reason, there are extensive researches have been proposed in order to prolong the network lifetime by means of designing and implementing energy-efficient protocols. The reason for these large number of proposed protocols to maximize the network lifetime is the difficulty and sometime impossibility to replace or recharge the batteries of wireless sensor nodes especially in the large WSN and hostile environment. 
 
-\indent The authors have been defined the network lifetime in different contexts and use it as a metric to evaluate the performance of their protocols. Based on the previous proposed works in prolonging the network lifetime;Various definitions exist for the lifetime of a sensor network~\cite{ref92,ref93} such as:~\textbf{(i)} is the time spent by WSN until the death of the first wireless sensor node ( or cluster head ) in the network due to its energy depletion.~\textbf{(ii)} is the time spent by WSN and has at least a specific set $\beta$ of alive sensor nodes in WSN.~\textbf{(iii)} is the time spent by WSN until the death of all wireless sensor nodes in WSN because they have been depleted of their energy.~\textbf{(iv)} for  k-coverage is the time spent by WSN in covering the area of interest by at least $k$ sensor nodes.~\textbf{(v)} for 100 $\%$ coverage is the time spent by WSN in covering each target or the whole area by at least one sensor node.~\textbf{(vi)} for $\alpha$-coverage: the total time by which at least $\alpha$ part of the sensing field is covered by at least one node; or is the time spent by WSN until the coverage ratio becomes less than a predetermined threshold $\alpha$.~\textbf{(vii)} the working time spent by the system before either the coverage ratio or delivery ratio become less than a predetermined threshold.~\textbf{(viii)} the number of the successful data gathering trips.~\textbf{(ix)} the number of sent packets.~\textbf{(x)} the percentage of wireless sensor nodes that have a route to the sink.~\textbf{(xi)} the prediction of the total period of time during which the probability of ensuring the connectivity and k-coverage concurrently is at least $\alpha$.~\textbf{(xii)} the time spent by WSN until loosing the connectivity or the coverage.~\textbf{(xiii)} the time spent by WSN until acceptable event detection ratio is not acceptable in the network.~\textbf{(xiv)} the time spent by WSN and the application requirement has been met.
+\indent The authors have been defined the network lifetime in different contexts and use it as a metric to evaluate the performance of their protocols. Based on the previous proposed works in prolonging the network lifetime; Various definitions are exist for the lifetime of a sensor network~\cite{ref92,ref93} such as:~\textbf{(i)} is the time spent by WSN until the death of the first wireless sensor node ( or cluster head ) in the network due to its energy depletion.~\textbf{(ii)} is the time spent by WSN and has at least a specific set $\beta$ of alive sensor nodes in WSN.~\textbf{(iii)} is the time spent by WSN until the death of all wireless sensor nodes in WSN because they have been depleted their energy.~\textbf{(iv)} for  k-coverage is the time spent by WSN in covering the area of interest by at least $k$ sensor nodes.~\textbf{(v)} for 100 $\%$ coverage is the time spent by WSN in covering each target or the whole area by at least one sensor node.~\textbf{(vi)} for $\alpha$-coverage: the total time by which at least $\alpha$ part of the sensing field is covered by at least one node; or is the time spent by WSN until the coverage ratio becomes less than a predetermined threshold $\alpha$.~\textbf{(vii)} the working time spent by the system before either the coverage ratio or delivery ratio become less than a predetermined threshold.~\textbf{(viii)} the number of the successful data gathering trips.~\textbf{(ix)} the number of sent packets.~\textbf{(x)} the percentage of wireless sensor nodes that have a route to the sink.~\textbf{(xi)} the prediction of the total period of time during which the probability of ensuring the connectivity and k-coverage concurrently is at least $\alpha$.~\textbf{(xii)} the time spent by WSN until loosing the connectivity or the coverage.~\textbf{(xiii)} the time spent by WSN until acceptable event detection ratio is not acceptable in the network.~\textbf{(xiv)} the time spent by WSN and the application requirement has been met.
+
+\indent According to the above definitions for network lifetime, There is no universal definition reflects the requirements of each application and the effects of the environment. In real WSN, the network lifetime reflects a set of a particular circumstances of the environment. Accordingly, the current definitions are applicable for the WSNs that meet a particular conditions. However, many more parameters, which are affecting on the network lifetime of WSN such as~\cite{ref92}:  heterogeneity, node mobility, topology changes, application characteristics, quality of service, and completeness.
 
 
-\indent According to the above definitions for network lifetime, There is no universal definition reflects the requirements of each application and the effects of the environment. In real WSN, the network lifetime reflects a set of a particular circumstances of the environment. Accordingly, the current definitions are applicable for the WSNs that meet a particular conditions. However, there are many more parameters, which are affecting on the network lifetime of WSN such as~\cite{ref92}:  heterogeneity, node mobility, topology changes, application characteristics, quality of service, and completeness.
+The network lifetime has been defined in this dissertation as the time spent by WSN until the coverage ratio becomes less than a predetermined threshold $\alpha$.
 
 
 \section{Coverage in Wireless Sensor Networks } 
 
 
 \section{Coverage in Wireless Sensor Networks } 
@@ -334,12 +338,12 @@ In WSNs that included a static sink, the wireless sensor nodes, which are near t
 \indent Energy efficiency is  a crucial issue in wireless sensor networks since sensory
 consumption, in  order to  maximize the network lifetime, represents  the major
 difficulty when designing WSNs. As a consequence, one of the scientific research
 \indent Energy efficiency is  a crucial issue in wireless sensor networks since sensory
 consumption, in  order to  maximize the network lifetime, represents  the major
 difficulty when designing WSNs. As a consequence, one of the scientific research
-challenges in  WSNs, which has  been addressed by  a large amount  of literature
+challenges in  WSNs, which has  been addressed by a large amount of literature
 during the  last few  years, is  the design of  energy efficient  approaches for
 coverage and connectivity~\cite{ref94,ref101}. Coverage reflects how well a
 during the  last few  years, is  the design of  energy efficient  approaches for
 coverage and connectivity~\cite{ref94,ref101}. Coverage reflects how well a
-sensor  field is  monitored. On  the one  hand we  want to  monitor the  area of
-interest in the most efficient way~\cite{ref95}.  On the other hand we want to
-use  as little energy  as possible.   Sensor nodes  are battery-powered  with no
+sensor  field is  monitored. On the one hand, we want to monitor the  area of
+interest in the most efficient way~\cite{ref95}.  On the other hand, we want to
+use as little energy as possible. Sensor nodes are battery-powered  with no
 means  of recharging  or replacing,  usually  due to  environmental (hostile  or
 unpractical environments)  or cost reasons.   Therefore, it is desired  that the
 WSNs are deployed  with high densities so as to  exploit the overlapping sensing
 means  of recharging  or replacing,  usually  due to  environmental (hostile  or
 unpractical environments)  or cost reasons.   Therefore, it is desired  that the
 WSNs are deployed  with high densities so as to  exploit the overlapping sensing