From: ali Date: Mon, 20 Apr 2015 10:17:20 +0000 (+0200) Subject: Update by Ali X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAli.git/commitdiff_plain/6bf881a8ca453aa337be79c6945f1b97daf44039?ds=inline Update by Ali --- diff --git a/ACRONYMS.tex b/ACRONYMS.tex new file mode 100644 index 0000000..c873dfd --- /dev/null +++ b/ACRONYMS.tex @@ -0,0 +1,37 @@ +\chapter*{abbreviations \markboth{abbreviations}{abbreviations}} +\label{chap} +\addcontentsline{toc}{chapter}{abbreviations} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% %% +%% abbreviations %% +%% %% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + +\begin{abbreviations} +\item[WSN] Wireless Sensor Network +\item[DILCO] Distributed Lifetime Coverage Optimization +\item[MuDiLCO] Multiround Distributed Lifetime Coverage Optimization +\item[PeCO] Perimeter-based Coverage Optimization +\item[DESK] Distributed Energy-efficient Scheduling for K-coverage +\item[GAF] Geographical Adaptive Fidelity +\item[PDA] Personal Digital Assistant +\item[WLAN] Wireless Local-Area Network +\item[MEMS] Micro-Electro-Mechanical Systems +\item[ADC] Analog to Digital Converters +\item[VCO] Voltage-Controlled Oscillator +\item[PLL] Phase-Locked Loop +\item[GPS] Global Positioning System +\item[OS] Operating System +\item[CMOS] Complementary Metal-Oxide-Silicon +\item[MAV] Micro Aerial Vehicle +\item[ECG] Electrocardiogram +\item[SCADA] Supervisory Control and Data Acquisition +\item[] +\item[] +\item[] +\item[] +\end{abbreviations} + + \ No newline at end of file diff --git a/CHAPITRE_01.tex b/CHAPITRE_01.tex index b6b4a4b..ec27e65 100644 --- a/CHAPITRE_01.tex +++ b/CHAPITRE_01.tex @@ -13,7 +13,7 @@ \label{ch1:sec:01} %The wireless networking has received more attention and fast growth in the last decade. In the last decade, wireless networking has became a major component of the global network infrastructure. -More precisely, the growing demand for the use of wireless applications and the continuous arrival of wireless devices such as portable computers, cellular phones, and personal digital assistants (PDAs) have led to develop different infrastructures of wireless networks. The wireless networks can be classified into two classes based on the network architecture~\cite{ref154,ref155}: Infrastructure-based networks that consist of a fixed network structure such as cellular networks and wireless local-area networks +More precisely, the growing demand for the use of wireless applications and the continuous arrival of wireless devices such as portable computers, cellular phones, and Personal Digital Assistants (PDAs) have led to develop different infrastructures of wireless networks. The wireless networks can be classified into two classes based on the network architecture~\cite{ref154,ref155}: Infrastructure-based networks that consist of a fixed network structure such as cellular networks and Wireless Local-Area Networks (WLANs); and Infrastructureless networks that are constructed dynamically by the cooperation of the wireless nodes in the network, where each node is capable of sending packets and taking decisions based on the network status. Examples of such type of networks include mobile ad hoc networks and wireless sensor networks. Figure~\ref{WNT} shows the taxonomy of wireless networks. \begin{figure}[h!] @@ -51,7 +51,7 @@ Figure~\ref{twsn} shows the components of a typical wireless sensor node~\cite{r \item \textbf{Computation Unit:} The main purpose of this unit is to manage and manipulate the instructions that are related to sensing, communication, and self-organization. This allows the sensor node to cooperate with other sensor nodes in order to perform the allocated sensing tasks. It is composed of a processor chip, an active short-term memory for storing the sensed data, an internal flash memory for storing program instructions, and an internal timer. -\item \textbf{Communication Unit:} It is responsible for all data transmission and reception done by the sensor node, which are performed by the transceiver circuitry. A transceiver circuit is composed of a mixer, frequency synthesizer, voltage-controlled oscillator (VCO), phase-locked loop (PLL), demodulator, and power amplifiers. All these components consume valuable power~\cite{ref19}. +\item \textbf{Communication Unit:} It is responsible for all data transmission and reception done by the sensor node, which are performed by the transceiver circuitry. A transceiver circuit is composed of a mixer, frequency synthesizer, Voltage-Controlled Oscillator (VCO), Phase-Locked Loop (PLL), demodulator, and power amplifiers. All these components consume valuable power~\cite{ref19}. \item \textbf{Power Unit:} This unit represents the most significant part of a sensor node. It supplies the other units by the needed power. diff --git a/Thesis.tex b/Thesis.tex index 2105500..e1bfe33 100644 --- a/Thesis.tex +++ b/Thesis.tex @@ -30,14 +30,18 @@ \listofalgorithms \addcontentsline{toc}{chapter}{List of Algorithms} \setlength{\parindent}{0.5cm} + + +\addcontentsline{toc}{chapter}{List of Acronyms} %% Remerciements +\include{ACRONYMS} + %\include{REMERCIEMENTS} %% Citation %\include{CITATION} - - +% LIST OF ACRONYMS \include{Abstruct} diff --git a/Thesis.toc b/Thesis.toc index db993e3..2e06f6f 100644 --- a/Thesis.toc +++ b/Thesis.toc @@ -3,103 +3,105 @@ \contentsline {chapter}{List of Figures}{6}{chapter*.2} \contentsline {chapter}{List of Tables}{7}{chapter*.3} \contentsline {chapter}{List of Algorithms}{9}{chapter*.4} -\contentsline {chapter}{Abstract}{11}{chapter*.5} -\contentsline {chapter}{Introduction }{13}{chapter*.6} -\contentsline {section}{1. General Introduction }{13}{section*.7} -\contentsline {section}{2. Motivation of the Dissertation }{14}{section*.8} -\contentsline {section}{3. The Objective of this Dissertation}{14}{section*.9} -\contentsline {section}{4. Main Contributions of this Dissertation}{14}{section*.10} -\contentsline {section}{5. Dissertation Outline}{16}{section*.11} -\contentsline {part}{I\hspace {1em}Scientific Background}{17}{part.1} -\contentsline {chapter}{\numberline {1}Wireless Sensor Networks}{19}{chapter.1} -\contentsline {section}{\numberline {1.1}Introduction}{19}{section.1.1} -\contentsline {section}{\numberline {1.2}Architecture}{20}{section.1.2} -\contentsline {section}{\numberline {1.3}Types of Wireless Sensor Networks}{22}{section.1.3} -\contentsline {section}{\numberline {1.4}Applications}{24}{section.1.4} -\contentsline {section}{\numberline {1.5}The Main Challenges}{27}{section.1.5} -\contentsline {section}{\numberline {1.6}Energy-Efficient Mechanisms of a working WSN}{29}{section.1.6} -\contentsline {subsection}{\numberline {1.6.1}Energy-Efficient Routing}{29}{subsection.1.6.1} -\contentsline {subsubsection}{\numberline {1.6.1.1}Routing Metric based on Residual Energy}{29}{subsubsection.1.6.1.1} -\contentsline {subsubsection}{\numberline {1.6.1.2}Multipath Routing}{29}{subsubsection.1.6.1.2} -\contentsline {subsection}{\numberline {1.6.2}Cluster Architecture}{30}{subsection.1.6.2} -\contentsline {subsection}{\numberline {1.6.3}Scheduling Schemes}{30}{subsection.1.6.3} -\contentsline {subsubsection}{\numberline {1.6.3.1}Wake up Scheduling Schemes}{30}{subsubsection.1.6.3.1} -\contentsline {subsubsection}{\numberline {1.6.3.2}Topology Control Schemes}{33}{subsubsection.1.6.3.2} -\contentsline {subsection}{\numberline {1.6.4}Data-Driven Schemes}{33}{subsection.1.6.4} -\contentsline {subsubsection}{\numberline {1.6.4.1}Data Reduction Schemes}{34}{subsubsection.1.6.4.1} -\contentsline {subsubsection}{\numberline {1.6.4.2}Energy Efficient Data Acquisition Schemes}{34}{subsubsection.1.6.4.2} -\contentsline {subsection}{\numberline {1.6.5}Battery Repletion}{34}{subsection.1.6.5} -\contentsline {subsection}{\numberline {1.6.6}Radio Optimization}{34}{subsection.1.6.6} -\contentsline {subsection}{\numberline {1.6.7}Relay nodes and Sink Mobility}{35}{subsection.1.6.7} -\contentsline {subsubsection}{\numberline {1.6.7.1}Relay node placement}{35}{subsubsection.1.6.7.1} -\contentsline {subsubsection}{\numberline {1.6.7.2}Sink Mobility}{35}{subsubsection.1.6.7.2} -\contentsline {section}{\numberline {1.7}Network Lifetime}{35}{section.1.7} -\contentsline {section}{\numberline {1.8}Coverage in Wireless Sensor Networks }{36}{section.1.8} -\contentsline {section}{\numberline {1.9}Design Issues for Coverage Problems}{38}{section.1.9} -\contentsline {section}{\numberline {1.10}Energy Consumption Model}{39}{section.1.10} -\contentsline {section}{\numberline {1.11}Conclusion}{40}{section.1.11} -\contentsline {chapter}{\numberline {2}Related Works on Coverage Problems}{41}{chapter.2} -\contentsline {section}{\numberline {2.1}Introduction}{41}{section.2.1} -\contentsline {section}{\numberline {2.2}Centralized Algorithms}{43}{section.2.2} -\contentsline {section}{\numberline {2.3}Distributed Algorithms}{46}{section.2.3} -\contentsline {subsection}{\numberline {2.3.1}GAF}{48}{subsection.2.3.1} -\contentsline {subsection}{\numberline {2.3.2}DESK}{50}{subsection.2.3.2} -\contentsline {section}{\numberline {2.4}Conclusion}{52}{section.2.4} -\contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{55}{chapter.3} -\contentsline {section}{\numberline {3.1}Introduction}{55}{section.3.1} -\contentsline {section}{\numberline {3.2}Evaluation Tools}{55}{section.3.2} -\contentsline {subsection}{\numberline {3.2.1}Testbed Tools}{56}{subsection.3.2.1} -\contentsline {subsection}{\numberline {3.2.2}Simulation Tools}{57}{subsection.3.2.2} -\contentsline {section}{\numberline {3.3}Optimization Solvers}{62}{section.3.3} -\contentsline {section}{\numberline {3.4}Conclusion}{65}{section.3.4} -\contentsline {part}{II\hspace {1em}Contributions}{67}{part.2} -\contentsline {chapter}{\numberline {4}Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{69}{chapter.4} -\contentsline {section}{\numberline {4.1}Introduction}{69}{section.4.1} -\contentsline {section}{\numberline {4.2}Description of the DiLCO Protocol}{70}{section.4.2} -\contentsline {subsection}{\numberline {4.2.1}Assumptions and Network Model}{70}{subsection.4.2.1} -\contentsline {subsection}{\numberline {4.2.2}Primary Point Coverage Model}{71}{subsection.4.2.2} -\contentsline {subsection}{\numberline {4.2.3}Main Idea}{72}{subsection.4.2.3} -\contentsline {subsubsection}{\numberline {4.2.3.1}Information Exchange Phase}{73}{subsubsection.4.2.3.1} -\contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{73}{subsubsection.4.2.3.2} -\contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{73}{subsubsection.4.2.3.3} -\contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{73}{subsubsection.4.2.3.4} -\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{74}{section.4.3} -\contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{76}{section.4.4} -\contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{76}{subsection.4.4.1} -\contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{76}{subsection.4.4.2} -\contentsline {subsection}{\numberline {4.4.3}Energy Consumption Model}{76}{subsection.4.4.3} -\contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{77}{subsection.4.4.4} -\contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Subregions}{78}{subsection.4.4.5} -\contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Primary Point Models}{84}{subsection.4.4.6} -\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{89}{subsection.4.4.7} -\contentsline {section}{\numberline {4.5}Conclusion}{95}{section.4.5} -\contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{97}{chapter.5} -\contentsline {section}{\numberline {5.1}Introduction}{97}{section.5.1} -\contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{98}{section.5.2} -\contentsline {subsection}{\numberline {5.2.1}Background Idea and Algorithm}{98}{subsection.5.2.1} -\contentsline {section}{\numberline {5.3}Primary Points based Multiround Coverage Problem Formulation}{99}{section.5.3} -\contentsline {section}{\numberline {5.4}Experimental Study and Analysis}{101}{section.5.4} -\contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{101}{subsection.5.4.1} -\contentsline {subsection}{\numberline {5.4.2}Metrics}{102}{subsection.5.4.2} -\contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{103}{subsection.5.4.3} -\contentsline {section}{\numberline {5.5}Conclusion}{108}{section.5.5} -\contentsline {chapter}{\numberline {6}Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{111}{chapter.6} -\contentsline {section}{\numberline {6.1}Introduction}{111}{section.6.1} -\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{112}{section.6.2} -\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{112}{subsection.6.2.1} -\contentsline {subsection}{\numberline {6.2.2}The Main Idea}{115}{subsection.6.2.2} -\contentsline {subsection}{\numberline {6.2.3}PeCO Protocol Algorithm}{115}{subsection.6.2.3} -\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{116}{section.6.3} -\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{118}{section.6.4} -\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{118}{subsection.6.4.1} -\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{119}{subsection.6.4.2} -\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{120}{subsubsection.6.4.2.1} -\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{120}{subsubsection.6.4.2.2} -\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{121}{subsubsection.6.4.2.3} -\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{121}{subsubsection.6.4.2.4} -\contentsline {section}{\numberline {6.5}Conclusion}{124}{section.6.5} -\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{125}{part.3} -\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{127}{chapter.7} -\contentsline {section}{\numberline {7.1}Conclusion}{127}{section.7.1} -\contentsline {section}{\numberline {7.2}Perspectives}{128}{section.7.2} -\contentsline {part}{Bibliographie}{144}{chapter*.12} +\contentsline {chapter}{List of Acronyms}{9}{chapter*.4} +\contentsline {chapter}{abbreviations}{11}{chapter*.5} +\contentsline {chapter}{Abstract}{13}{chapter*.6} +\contentsline {chapter}{Introduction }{15}{chapter*.7} +\contentsline {section}{1. General Introduction }{15}{section*.8} +\contentsline {section}{2. Motivation of the Dissertation }{16}{section*.9} +\contentsline {section}{3. The Objective of this Dissertation}{16}{section*.10} +\contentsline {section}{4. Main Contributions of this Dissertation}{16}{section*.11} +\contentsline {section}{5. Dissertation Outline}{18}{section*.12} +\contentsline {part}{I\hspace {1em}Scientific Background}{19}{part.1} +\contentsline {chapter}{\numberline {1}Wireless Sensor Networks}{21}{chapter.1} +\contentsline {section}{\numberline {1.1}Introduction}{21}{section.1.1} +\contentsline {section}{\numberline {1.2}Architecture}{22}{section.1.2} +\contentsline {section}{\numberline {1.3}Types of Wireless Sensor Networks}{24}{section.1.3} +\contentsline {section}{\numberline {1.4}Applications}{26}{section.1.4} +\contentsline {section}{\numberline {1.5}The Main Challenges}{29}{section.1.5} +\contentsline {section}{\numberline {1.6}Energy-Efficient Mechanisms of a working WSN}{31}{section.1.6} +\contentsline {subsection}{\numberline {1.6.1}Energy-Efficient Routing}{31}{subsection.1.6.1} +\contentsline {subsubsection}{\numberline {1.6.1.1}Routing Metric based on Residual Energy}{31}{subsubsection.1.6.1.1} +\contentsline {subsubsection}{\numberline {1.6.1.2}Multipath Routing}{31}{subsubsection.1.6.1.2} +\contentsline {subsection}{\numberline {1.6.2}Cluster Architecture}{32}{subsection.1.6.2} +\contentsline {subsection}{\numberline {1.6.3}Scheduling Schemes}{32}{subsection.1.6.3} +\contentsline {subsubsection}{\numberline {1.6.3.1}Wake up Scheduling Schemes}{32}{subsubsection.1.6.3.1} +\contentsline {subsubsection}{\numberline {1.6.3.2}Topology Control Schemes}{35}{subsubsection.1.6.3.2} +\contentsline {subsection}{\numberline {1.6.4}Data-Driven Schemes}{35}{subsection.1.6.4} +\contentsline {subsubsection}{\numberline {1.6.4.1}Data Reduction Schemes}{36}{subsubsection.1.6.4.1} +\contentsline {subsubsection}{\numberline {1.6.4.2}Energy Efficient Data Acquisition Schemes}{36}{subsubsection.1.6.4.2} +\contentsline {subsection}{\numberline {1.6.5}Battery Repletion}{36}{subsection.1.6.5} +\contentsline {subsection}{\numberline {1.6.6}Radio Optimization}{36}{subsection.1.6.6} +\contentsline {subsection}{\numberline {1.6.7}Relay nodes and Sink Mobility}{37}{subsection.1.6.7} +\contentsline {subsubsection}{\numberline {1.6.7.1}Relay node placement}{37}{subsubsection.1.6.7.1} +\contentsline {subsubsection}{\numberline {1.6.7.2}Sink Mobility}{37}{subsubsection.1.6.7.2} +\contentsline {section}{\numberline {1.7}Network Lifetime}{37}{section.1.7} +\contentsline {section}{\numberline {1.8}Coverage in Wireless Sensor Networks }{38}{section.1.8} +\contentsline {section}{\numberline {1.9}Design Issues for Coverage Problems}{40}{section.1.9} +\contentsline {section}{\numberline {1.10}Energy Consumption Model}{41}{section.1.10} +\contentsline {section}{\numberline {1.11}Conclusion}{42}{section.1.11} +\contentsline {chapter}{\numberline {2}Related Works on Coverage Problems}{43}{chapter.2} +\contentsline {section}{\numberline {2.1}Introduction}{43}{section.2.1} +\contentsline {section}{\numberline {2.2}Centralized Algorithms}{45}{section.2.2} +\contentsline {section}{\numberline {2.3}Distributed Algorithms}{48}{section.2.3} +\contentsline {subsection}{\numberline {2.3.1}GAF}{50}{subsection.2.3.1} +\contentsline {subsection}{\numberline {2.3.2}DESK}{52}{subsection.2.3.2} +\contentsline {section}{\numberline {2.4}Conclusion}{54}{section.2.4} +\contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{57}{chapter.3} +\contentsline {section}{\numberline {3.1}Introduction}{57}{section.3.1} +\contentsline {section}{\numberline {3.2}Evaluation Tools}{57}{section.3.2} +\contentsline {subsection}{\numberline {3.2.1}Testbed Tools}{58}{subsection.3.2.1} +\contentsline {subsection}{\numberline {3.2.2}Simulation Tools}{59}{subsection.3.2.2} +\contentsline {section}{\numberline {3.3}Optimization Solvers}{64}{section.3.3} +\contentsline {section}{\numberline {3.4}Conclusion}{67}{section.3.4} +\contentsline {part}{II\hspace {1em}Contributions}{69}{part.2} +\contentsline {chapter}{\numberline {4}Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{71}{chapter.4} +\contentsline {section}{\numberline {4.1}Introduction}{71}{section.4.1} +\contentsline {section}{\numberline {4.2}Description of the DiLCO Protocol}{72}{section.4.2} +\contentsline {subsection}{\numberline {4.2.1}Assumptions and Network Model}{72}{subsection.4.2.1} +\contentsline {subsection}{\numberline {4.2.2}Primary Point Coverage Model}{73}{subsection.4.2.2} +\contentsline {subsection}{\numberline {4.2.3}Main Idea}{74}{subsection.4.2.3} +\contentsline {subsubsection}{\numberline {4.2.3.1}Information Exchange Phase}{75}{subsubsection.4.2.3.1} +\contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{75}{subsubsection.4.2.3.2} +\contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{75}{subsubsection.4.2.3.3} +\contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{75}{subsubsection.4.2.3.4} +\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{76}{section.4.3} +\contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{78}{section.4.4} +\contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{78}{subsection.4.4.1} +\contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{78}{subsection.4.4.2} +\contentsline {subsection}{\numberline {4.4.3}Energy Consumption Model}{78}{subsection.4.4.3} +\contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{79}{subsection.4.4.4} +\contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Subregions}{80}{subsection.4.4.5} +\contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Primary Point Models}{86}{subsection.4.4.6} +\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{91}{subsection.4.4.7} +\contentsline {section}{\numberline {4.5}Conclusion}{97}{section.4.5} +\contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{99}{chapter.5} +\contentsline {section}{\numberline {5.1}Introduction}{99}{section.5.1} +\contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{100}{section.5.2} +\contentsline {subsection}{\numberline {5.2.1}Background Idea and Algorithm}{100}{subsection.5.2.1} +\contentsline {section}{\numberline {5.3}Primary Points based Multiround Coverage Problem Formulation}{101}{section.5.3} +\contentsline {section}{\numberline {5.4}Experimental Study and Analysis}{103}{section.5.4} +\contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{103}{subsection.5.4.1} +\contentsline {subsection}{\numberline {5.4.2}Metrics}{104}{subsection.5.4.2} +\contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{105}{subsection.5.4.3} +\contentsline {section}{\numberline {5.5}Conclusion}{110}{section.5.5} +\contentsline {chapter}{\numberline {6}Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{113}{chapter.6} +\contentsline {section}{\numberline {6.1}Introduction}{113}{section.6.1} +\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{114}{section.6.2} +\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{114}{subsection.6.2.1} +\contentsline {subsection}{\numberline {6.2.2}The Main Idea}{117}{subsection.6.2.2} +\contentsline {subsection}{\numberline {6.2.3}PeCO Protocol Algorithm}{117}{subsection.6.2.3} +\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{118}{section.6.3} +\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{120}{section.6.4} +\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{120}{subsection.6.4.1} +\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{121}{subsection.6.4.2} +\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{122}{subsubsection.6.4.2.1} +\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{122}{subsubsection.6.4.2.2} +\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{123}{subsubsection.6.4.2.3} +\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{123}{subsubsection.6.4.2.4} +\contentsline {section}{\numberline {6.5}Conclusion}{126}{section.6.5} +\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{127}{part.3} +\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{129}{chapter.7} +\contentsline {section}{\numberline {7.1}Conclusion}{129}{section.7.1} +\contentsline {section}{\numberline {7.2}Perspectives}{130}{section.7.2} +\contentsline {part}{Bibliographie}{146}{chapter*.13} diff --git a/entete.tex b/entete.tex index c56ba45..7516066 100644 --- a/entete.tex +++ b/entete.tex @@ -18,9 +18,10 @@ %\documentclass[french,book,nopubpage,nodocumentinfo]{spimufcphdthesis} \documentclass[english, book,nopubpage,nodocumentinfo]{spimufcphdthesis} %%-------------------- - - - +\usepackage[acronym,smallcaps]{glossaries} +\newcommand{\abbrlabel}[1]{\makebox[2cm][l]{\textbf{#1}\ \dotfill}} +\newenvironment{abbreviations}{\begin{list}{}{\renewcommand{\makelabel}{\abbrlabel}}}{\end{list}} +\usepackage{tabularx} \usepackage[utf8]{inputenc} \usepackage{enumerate} \usepackage[english]{babel}