From: ali Date: Fri, 15 May 2015 09:40:46 +0000 (+0200) Subject: Update by Ali X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ThesisAli.git/commitdiff_plain/b526efd6a44846d1d89a70fedae4bf9bd2058885?hp=dc6cf8e426e52e11890b51d8cfbe8193285bea12 Update by Ali --- diff --git a/CHAPITRE_06.tex b/CHAPITRE_06.tex index f72a7ba..f4e8bb0 100644 --- a/CHAPITRE_06.tex +++ b/CHAPITRE_06.tex @@ -190,47 +190,47 @@ protocol applied by a sensor node $s_j$ where $j$ is the node index in the WSN. %\emph{Initialize the sensor node and determine it's position and subregion} \; \If{ $RE_k \geq E_{th}$ }{ - \emph{$s_k.status$ = COMMUNICATION}\; + \emph{$s_j.status$ = COMMUNICATION}\; \emph{Send $INFO()$ packet to other nodes in subregion}\; \emph{Wait $INFO()$ packet from other nodes in subregion}\; \emph{Update A.CurrentSize}\; \emph{LeaderID = Leader election}\; - \If{$ s_k.ID = LeaderID $}{ - \emph{$s_k.status$ = COMPUTATION}\; + \If{$ s_j.ID = LeaderID $}{ + \emph{$s_j.status$ = COMPUTATION}\; - \If{$ s_k.ID $ is Not previously selected as a Leader }{ + \If{$ s_j.ID $ is Not previously selected as a Leader }{ \emph{ Execute the perimeter coverage model}\; % \emph{ Determine the segment points using perimeter coverage model}\; } - \If{$ (s_k.ID $ is the same Previous Leader) And (A.CurrentSize = A.PreviousSize)}{ + \If{$ (s_j.ID $ is the same Previous Leader) And (A.CurrentSize = A.PreviousSize)}{ \emph{ Use the same previous cover set for current sensing stage}\; } \Else{ \emph{Update $a^j_{ik}$; prepare data for IP~Algorithm}\; - \emph{$\left\{\left(X_{1},\dots,X_{l},\dots,X_{A}\right)\right\}$ = Execute Integer Program Algorithm($A$)}\; + \emph{$\left\{\left(X_{1},\dots,X_{k},\dots,X_{A}\right)\right\}$ = Execute Integer Program Algorithm($A$)}\; \emph{A.PreviousSize = A.CurrentSize}\; } - \emph{$s_k.status$ = COMMUNICATION}\; - \emph{Send $ActiveSleep()$ to each node $l$ in subregion}\; - \emph{Update $RE_k $}\; + \emph{$s_j.status$ = COMMUNICATION}\; + \emph{Send $ActiveSleep()$ to each node $k$ in subregion}\; + \emph{Update $RE_j $}\; } \Else{ - \emph{$s_k.status$ = LISTENING}\; + \emph{$s_j.status$ = LISTENING}\; \emph{Wait $ActiveSleep()$ packet from the Leader}\; - \emph{Update $RE_k $}\; + \emph{Update $RE_j $}\; } } - \Else { Exclude $s_k$ from entering in the current sensing stage} -\caption{PeCO($s_k$)} + \Else { Exclude $s_j$ from entering in the current sensing stage} +\caption{PeCO($s_j$)} \label{alg:PeCO} \end{algorithm} In this algorithm, A.CurrentSize and A.PreviousSize respectively represent the current number and the previous number of living nodes in the subnetwork of the -subregion. Initially, the sensor node checks its remaining energy $RE_k$, which +subregion. Initially, the sensor node checks its remaining energy $RE_j$, which must be greater than a threshold $E_{th}$ in order to participate in the current period. Each sensor node determines its position and its subregion using an embedded GPS or a location discovery algorithm. After that, all the sensors @@ -485,9 +485,9 @@ is about twice longer with PeCO compared to DESK protocol. The performance difference is more obvious in Figure~\ref{fig3LT}(b) than in Figure~\ref{fig3LT}(a) because the gain induced by our protocols increases with time, and the lifetime with a coverage of 50\% is far longer than with -95\%. +95\%. -\begin{figure}[h!] +\begin{figure} [p] \centering \begin{tabular}{@{}cr@{}} \includegraphics[scale=0.8]{Figures/ch6/R/LT95.eps} & \raisebox{4cm}{(a)} \\ @@ -509,15 +509,15 @@ lower coverage ratios, moreover the improvements grow with the network size. DiLCO is better for coverage ratios near 100\%, but in that case PeCO is not ineffective for the smallest network sizes. -\begin{figure}[h!] +\begin{figure} [p] \centering \includegraphics[scale=0.8]{Figures/ch6/R/LTa.eps} \caption{Network lifetime for different coverage ratios.} \label{figLTALL} -\end{figure} - +\end{figure} -\section{Conclusion} + %\FloatBarrier +\section{Conclusion} \label{ch6:sec:05} In this chapter, we have studied the problem of Perimeter-based Coverage Optimization in diff --git a/Thesis.toc b/Thesis.toc index 5e7efc9..60e32f1 100644 --- a/Thesis.toc +++ b/Thesis.toc @@ -64,7 +64,7 @@ \contentsline {subsubsection}{\numberline {4.2.3.2}Leader Election Phase}{79}{subsubsection.4.2.3.2} \contentsline {subsubsection}{\numberline {4.2.3.3}Decision phase}{80}{subsubsection.4.2.3.3} \contentsline {subsubsection}{\numberline {4.2.3.4}Sensing phase}{80}{subsubsection.4.2.3.4} -\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{80}{section.4.3} +\contentsline {section}{\numberline {4.3}Primary Points based Coverage Problem Formulation}{81}{section.4.3} \contentsline {section}{\numberline {4.4}Simulation Results and Analysis}{82}{section.4.4} \contentsline {subsection}{\numberline {4.4.1}Simulation Framework}{82}{subsection.4.4.1} \contentsline {subsection}{\numberline {4.4.2}Modeling Language and Optimization Solver}{83}{subsection.4.4.2} @@ -72,8 +72,8 @@ \contentsline {subsection}{\numberline {4.4.4}Performance Metrics}{84}{subsection.4.4.4} \contentsline {subsection}{\numberline {4.4.5}Performance Analysis for Different Number of Subregions}{85}{subsection.4.4.5} \contentsline {subsection}{\numberline {4.4.6}Performance Analysis for Different Number of Primary Points}{90}{subsection.4.4.6} -\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{95}{subsection.4.4.7} -\contentsline {section}{\numberline {4.5}Conclusion}{101}{section.4.5} +\contentsline {subsection}{\numberline {4.4.7}Performance Comparison with other Approaches}{97}{subsection.4.4.7} +\contentsline {section}{\numberline {4.5}Conclusion}{102}{section.4.5} \contentsline {chapter}{\numberline {5}Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sensor Networks}{103}{chapter.5} \contentsline {section}{\numberline {5.1}Introduction}{103}{section.5.1} \contentsline {section}{\numberline {5.2}MuDiLCO Protocol Description}{103}{section.5.2} @@ -83,23 +83,23 @@ \contentsline {subsection}{\numberline {5.4.1}Simulation Setup}{107}{subsection.5.4.1} \contentsline {subsection}{\numberline {5.4.2}Metrics}{107}{subsection.5.4.2} \contentsline {subsection}{\numberline {5.4.3}Results Analysis and Comparison }{108}{subsection.5.4.3} -\contentsline {section}{\numberline {5.5}Conclusion}{113}{section.5.5} -\contentsline {chapter}{\numberline {6} Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{115}{chapter.6} -\contentsline {section}{\numberline {6.1}Introduction}{115}{section.6.1} -\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{115}{section.6.2} -\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{115}{subsection.6.2.1} -\contentsline {subsection}{\numberline {6.2.2}PeCO Protocol Algorithm}{118}{subsection.6.2.2} -\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{120}{section.6.3} -\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{121}{section.6.4} -\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{121}{subsection.6.4.1} -\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{122}{subsection.6.4.2} -\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{122}{subsubsection.6.4.2.1} -\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{122}{subsubsection.6.4.2.2} -\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{122}{subsubsection.6.4.2.3} -\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{125}{subsubsection.6.4.2.4} -\contentsline {section}{\numberline {6.5}Conclusion}{125}{section.6.5} -\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{129}{part.3} -\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{131}{chapter.7} -\contentsline {section}{\numberline {7.1}Conclusion}{131}{section.7.1} -\contentsline {section}{\numberline {7.2}Perspectives}{132}{section.7.2} -\contentsline {part}{Bibliographie}{148}{chapter*.13} +\contentsline {section}{\numberline {5.5}Conclusion}{115}{section.5.5} +\contentsline {chapter}{\numberline {6} Perimeter-based Coverage Optimization to Improve Lifetime in Wireless Sensor Networks}{117}{chapter.6} +\contentsline {section}{\numberline {6.1}Introduction}{117}{section.6.1} +\contentsline {section}{\numberline {6.2}The PeCO Protocol Description}{117}{section.6.2} +\contentsline {subsection}{\numberline {6.2.1}Assumptions and Models}{117}{subsection.6.2.1} +\contentsline {subsection}{\numberline {6.2.2}PeCO Protocol Algorithm}{120}{subsection.6.2.2} +\contentsline {section}{\numberline {6.3}Perimeter-based Coverage Problem Formulation}{122}{section.6.3} +\contentsline {section}{\numberline {6.4}Performance Evaluation and Analysis}{123}{section.6.4} +\contentsline {subsection}{\numberline {6.4.1}Simulation Settings}{123}{subsection.6.4.1} +\contentsline {subsection}{\numberline {6.4.2}Simulation Results}{124}{subsection.6.4.2} +\contentsline {subsubsection}{\numberline {6.4.2.1}Coverage Ratio}{124}{subsubsection.6.4.2.1} +\contentsline {subsubsection}{\numberline {6.4.2.2}Active Sensors Ratio}{124}{subsubsection.6.4.2.2} +\contentsline {subsubsection}{\numberline {6.4.2.3}The Energy Consumption}{124}{subsubsection.6.4.2.3} +\contentsline {subsubsection}{\numberline {6.4.2.4}The Network Lifetime}{127}{subsubsection.6.4.2.4} +\contentsline {section}{\numberline {6.5}Conclusion}{130}{section.6.5} +\contentsline {part}{III\hspace {1em}Conclusion and Perspectives}{131}{part.3} +\contentsline {chapter}{\numberline {7}Conclusion and Perspectives}{133}{chapter.7} +\contentsline {section}{\numberline {7.1}Conclusion}{133}{section.7.1} +\contentsline {section}{\numberline {7.2}Perspectives}{134}{section.7.2} +\contentsline {part}{Bibliographie}{150}{chapter*.13} diff --git a/entete.tex b/entete.tex index 68e0256..61f2137 100644 --- a/entete.tex +++ b/entete.tex @@ -31,6 +31,10 @@ \usepackage{multirow} \usepackage{array} +\usepackage[section]{placeins} +\usepackage{float} + + \newcommand*\rot{\rotatebox{90}} \newcommand*\OK{\ding{51}}