From 128f3c39649e66bf2bcc88f5c95b8b7caaf9c5fd Mon Sep 17 00:00:00 2001 From: ali Date: Tue, 31 Mar 2015 02:40:43 +0200 Subject: [PATCH 1/1] Update by Ali --- CHAPITRE_02.tex | 28 ++++++++++++++++++++++++---- Thesis.toc | 2 +- 2 files changed, 25 insertions(+), 5 deletions(-) diff --git a/CHAPITRE_02.tex b/CHAPITRE_02.tex index f20f987..9bcd70d 100755 --- a/CHAPITRE_02.tex +++ b/CHAPITRE_02.tex @@ -176,7 +176,27 @@ The sensor node sets a timer to $T_d$ seconds after entering in the discovery st \subsection{DESK} \label{ch2:sec:03:2} -In~\cite{DESK}, the author design a novel distributed heuristic, called Distributed Energy-efficient Scheduling for k-coverage (DESK), which ensures that the energy consumption among the sensors is balanced and the lifetime maximized while the coverage requirement is maintained. This heuristic works in rounds, requires only one-hop neighbor information, and each sensor decides its status (active or sleep) based on the perimeter coverage model from~\cite{ref133}. Figure~\ref{desk} shows the DESK network time line. +In~\cite{DESK}, the author design a novel distributed heuristic, called Distributed Energy-efficient Scheduling for k-coverage (DESK), which ensures that the energy consumption among the sensors is balanced and the lifetime maximized while the coverage requirement is satisfied. This heuristic works in rounds, requires only one-hop neighbor information, and each sensor decides its status (active or sleep) based on the perimeter coverage model from~\cite{ref133}. + +DESK is based on the result from \cite{ref133}, where two rules named k-Unit-disk Coverage (k-UC) and k-Non-unit-disk Coverage (k-NC) for +uniform and non-uniform sensing range sensor networks, respectively, are proposed. For the disk sensing range, the whole area is k-covered if and only if the perimeter of sensing regions of all sensors are k-covered. The k-NC is the generalization of k-UC. The coverage level of perimeter of a sensor $s_i$ is determined by calculating the angle corresponding to the arch that each of its neighbors covers its perimeter. Figure~\ref{figp}a illuminates such arches whilst figure~\ref{p2}b shows the angles corresponding with those arches, which were posted into the range [0,2$ \pi $]. According to figure ~\ref{figp}b, the coverage level of sensor $s_i$ can be calculated via traversing the range from 0 to 2$ \pi $. + + + +\begin{figure}[h!] + \centering + \begin{tabular}{@{}cr@{}} + \includegraphics[scale=0.475]{Figures/ch2/P2.jpg} & \raisebox{2.75cm}{(a)} \\ + \includegraphics[scale=0.475]{Figures/ch2/P1.jpg} & \raisebox{2.75cm}{(b)} + \end{tabular} + \caption{Determining the perimeter-coverage of $s_i$’s perimeter.} + \label{figp} +\end{figure} + + + + +Figure~\ref{desk} shows the DESK network time line. \begin{figure}[h!] \centering @@ -212,7 +232,7 @@ check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e \caption{Main characteristics of some coverage approaches in previous literatures.} \begin{tabular}{@{} cl*{13}c @{}} & & \multicolumn{10}{c}{Characteristics} \\[2ex] - & & \mcrot{1}{l}{50}{\footnotesize Distributed} & \mcrot{1}{l}{50}{\footnotesize Centralized} & \mcrot{1}{l}{50}{ \footnotesize Area coverage} & \mcrot{1}{l}{50}{\footnotesize Target coverage} & \mcrot{1}{l}{50}{\footnotesize k-coverage} & \mcrot{1}{l}{50}{\footnotesize Heterogeneous nodes}& \mcrot{1}{l}{50}{\footnotesize Homogeneous nodes} & \mcrot{1}{l}{50}{\footnotesize Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize Non-Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize SET K-COVER } & \mcrot{1}{l}{50}{\footnotesize Work in Rounds} & \mcrot{1}{l}{50}{\footnotesize Adjustable Radius} \\ + \multicolumn{2}{c}{\footnotesize Coverage Approach} & \mcrot{1}{l}{50}{\footnotesize Distributed} & \mcrot{1}{l}{50}{\footnotesize Centralized} & \mcrot{1}{l}{50}{ \footnotesize Area coverage} & \mcrot{1}{l}{50}{\footnotesize Target coverage} & \mcrot{1}{l}{50}{\footnotesize k-coverage} & \mcrot{1}{l}{50}{\footnotesize Heterogeneous nodes}& \mcrot{1}{l}{50}{\footnotesize Homogeneous nodes} & \mcrot{1}{l}{50}{\footnotesize Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize Non-Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize SET K-COVER } & \mcrot{1}{l}{50}{\footnotesize Work in Rounds} & \mcrot{1}{l}{50}{\footnotesize Adjustable Radius} \\ \cmidrule[1pt]{2-14} @@ -280,7 +300,7 @@ check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e & \tiny V. T. Quang and T. Miyoshi (2008)~\cite{ref146} & \OK & & \OK & & \OK & & \OK & & \OK & & \OK & &\\ -\rot{\rlap{Some Proposed Coverage Protocols in previous literatures}} +%\rot{\rlap{Some Proposed Coverage Protocols in previous literatures}} & \tiny D. Dong et al. (2012)~\cite{ref149} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ @@ -304,7 +324,7 @@ check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e &\textbf{\textcolor{red}{ \tiny MuDiLCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} &\textbf{\textcolor{red}{\OK}} & & \\ -&\textbf{\textcolor{red}{ \tiny LiCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & & &\textbf{\textcolor{red}{\OK}} & & \\ +&\textbf{\textcolor{red}{ \tiny PeCO Protocol (2015)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & & &\textbf{\textcolor{red}{\OK}} & & \\ \cmidrule[1pt]{2-14} \end{tabular} diff --git a/Thesis.toc b/Thesis.toc index 9c6401b..9726e1b 100755 --- a/Thesis.toc +++ b/Thesis.toc @@ -45,7 +45,7 @@ \contentsline {section}{\numberline {2.3}Distributed Algorithms}{46}{section.2.3} \contentsline {subsection}{\numberline {2.3.1}GAF}{48}{subsection.2.3.1} \contentsline {subsection}{\numberline {2.3.2}DESK}{49}{subsection.2.3.2} -\contentsline {section}{\numberline {2.4}Conclusion}{50}{section.2.4} +\contentsline {section}{\numberline {2.4}Conclusion}{51}{section.2.4} \contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{55}{chapter.3} \contentsline {section}{\numberline {3.1}Introduction}{55}{section.3.1} \contentsline {section}{\numberline {3.2}Evaluation Tools}{55}{section.3.2} -- 2.39.5