From 716093027f2d341ce0b373115dba8e6ac7c05482 Mon Sep 17 00:00:00 2001 From: ali Date: Tue, 10 Mar 2015 00:23:41 +0100 Subject: [PATCH] update by Ali --- CHAPITRE_03.tex | 20 +++++++++----------- 1 file changed, 9 insertions(+), 11 deletions(-) diff --git a/CHAPITRE_03.tex b/CHAPITRE_03.tex index 8194f52..ced7ed9 100755 --- a/CHAPITRE_03.tex +++ b/CHAPITRE_03.tex @@ -11,18 +11,16 @@ %%-------------------------------------------------------------------------------------------------------%% \section{Introduction} - Performance evaluation and optimization solvers are important tools and they are received a great interest by many researchers around the world. In the last few years, several intensive researches have been done about the WSNs, and for a large range of real world applications. Therefore, the performance evaluation of algorithms and protocols becomes challenging at various stages of design, development and implementation. In order to perform an efficient deployment, it is desirable to analyze the performance of the newly designed algorithms and protocols in WSNs. Performance evaluation tools are became precious means for evaluating the efficiency of algorithms and protocols in WSNs. -On the other side, the main challenges in the design of WSNs have given rise to a new hard and complex theoretical problems in optimization area. These optimization problems are related to several topics in WSNs such as coverage, topology control, scheduling, routing, mobility, etc. So, the optimization is very important in WSNs because the limited resources of the sensor nodes. For this reason, several proposed optimization problems are mathematically formulated so as to optimize the network lifetime and satisfy the application requirements. Therefore, in order to get the optimal solutions for these mathematical optimization problems, the optimization solver is the best candidate tool to solve them. The optimization solver takes mathematical optimization problem descriptions in a certain file format and calculate their optimal solution. - +Performance evaluation and optimization solvers are important tools and they are received a great interest by many researchers around the world. In the last few years, several intensive researches have been done about the WSNs, and for a wide range of real-world applications. Therefore, the performance evaluation of algorithms and protocols becomes challenging at various stages of design, development, and implementation. In order to perform an efficient deployment, it is desirable to analyze the performance of the newly designed algorithms and protocols in WSNs. Performance evaluation tools are becoming precious means for evaluating the efficiency of algorithms and protocols in WSNs. +On the other side, the main challenges in the design of WSNs have given rise to a new hard and complex theoretical problems in optimization area. These optimization problems are related to several topics in WSNs such as coverage, topology control, scheduling, routing, mobility, etc. So, the optimization is very important in WSNs because the limited resources of the sensor nodes. For this reason, several proposed optimization problems are mathematically formulated so as to optimize the network lifetime and satisfy the application requirements. Therefore, in order to get the optimal solutions for these mathematical optimization problems, the optimization solver is the best candidate tool to solve them. The optimization solver takes mathematical optimization problem descriptions in a certain file format and calculates their optimal solution. \section{Evaluation Tools} -Several proposed works in WSNs require to evaluate the power depletion efficiently and accurately for network lifetime prediction. On the other hand, the wrong energy evaluation leads to waste of energy because the sensor nodes might be rendered useless long time before draining their energy. Furthermore, the sensor nodes might die in advance of the expected lifetime. However, evaluation experiments on actual deployed WSN suffer some constraints because the large number of sensor nodes, which are deployed in a hostile and inaccessible environments. Furthermore, the analytical (or theoretical) models might be unrealistic for real world systems. +Several proposed works in WSNs require evaluating the power depletion efficiently and accurately for network lifetime prediction. On the other hand, the wrong energy evaluation leads to waste of energy because the sensor nodes might be rendered useless long time before draining their energy. Furthermore, the sensor nodes might die in advance of the expected lifetime. However, evaluation experiments on actually deployed WSN suffer some constraints because the large number of sensor nodes, which are deployed in a hostile and inaccessible environments. Moreover, the analytical (or theoretical) models might be unrealistic for real world systems. Therefore, the energy consumption results by simulation and testbed evaluations give an alternative on time, precision and cost. In addition, the researchers can also evaluate and test their proposed works with simulation tools as well as testbed devices. Two main evaluation tools for evaluating and validating large-scale wireless sensor networks performance: testbeds and simulations~\cite{ref176}. - \subsection{Testbed Tools} %~\cite{ref180} The testbed-based evaluations are necessary before deploying the WSN because it provides more realistic results for the complex physical phenomena constraints of the real world. In this section, only some testbeds are explained. These testbeds enable researchers and programmers to validate the performance of their algorithms and protocols on a physical network. More extensive details about testbeds are available in~\cite{ref178,ref178}. @@ -31,26 +29,26 @@ The testbed-based evaluations are necessary before deploying the WSN because it \item \textbf{MoteLab:} -MoteLab~\cite{ref181,ref182} is a WSN testbed developed at the electrical and computer engineering department of Harvard University. It is a public testbed, researchers can execute their WSN systems using a web-based interface. Authored researchers develop and test their applications and protocols on sensor nodes and visualize sensor nodes output via web-based interface. They are allowed to upload their executable files to run on real mote. Each mote is wall powered and is connected to a central server that offers scheduling, reprogramming and data logging. It is composed of 190 TMote Sky wireless sensor nodes. The wireless sensor node specifications are a TI MSP430 processor, 10 KB RAM, 1Mb flash, and Chipcon CC2420 radio. Each node is connected to the Ethernet. The users should be familiar with NesC programming language because the MoteLab only supports the TinyOS operating system. +MoteLab~\cite{ref181,ref182} is a WSN testbed developed at the electrical and computer engineering department of Harvard University. It is a public testbed, researchers can execute their WSN systems using a web-based interface. Authored researchers develop and test their applications and protocols on sensor nodes and visualize sensor nodes output via web-based interface. They are allowed to upload their executable files to run on real mote. Each mote is wall-powered and is connected to a central server that offers scheduling, reprogramming, and data logging. It is composed of 190 TMote Sky wireless sensor nodes. The wireless sensor node specifications are a TI MSP430 processor, 10 KB RAM, 1Mb flash, and Chipcon CC2420 radio. Each node is connected to the Ethernet. The users should be familiar with NesC programming language because the MoteLab only supports the TinyOS operating system. \item \textbf{WISBED:} -The WISEBED~\cite{ref183} is a large-scale WSN testbed with a hierarchical architecture that consists of four major parts: wireless sensor nodes, gateways, portal server, and overlay network. The lowest level of the hierarchy includes WSN and a set of the these sensor nodes are connected to the gateway to provide access to the attached sensor nodes. The gateways are connected to a portal server which not only supervises the WSN but it also allows to user interaction with the testbed, where each WISBED site includes separate portal server. The principal objectives of WISEBED are: heterogeneous WSN testbed, WSN testbed virtualization, facilitate the system evaluation by end users via variety of interfaces and software environment. +The WISEBED~\cite{ref183} is a large-scale WSN testbed with a hierarchical architecture that consists of four major parts: wireless sensor nodes, gateways, portal server, and overlay network. The lowest level of the hierarchy includes WSN and a set of these sensor nodes are connected to the gateway to provide access to the attached sensor nodes. The gateways are connected to a portal server, which not only supervises the WSN, but it also allows for user interaction with the testbed, where each WISBED site includes separate portal server. The principal objectives of WISEBED are heterogeneous WSN testbed, WSN testbed virtualization, facilitate the system evaluation by end users via a variety of interfaces and software environment. \item \textbf{IoT-LAB:} - IoT-LAB testbed~\cite{ref184,ref185} supplies a very large scale infrastructure service appropriate for evaluating small wireless sensor devices and heterogeneous communicating objects. IoT-LAB includes more than 2700 wireless sensor nodes deployed over six different regions in France. A different kinds of wireless sensor nodes are available, with different processor architectures (MSP430, STM32 and Cortex-A8) and different wireless chips (802.15.4 PHY @ 800 MHz or 2.4 GHz). Sensor nodes are either mobile or fixed and can be used in different topologies throughout all the regions. -IoT-LAB provides web-based reservation and tooling for protocols and applications development, along with direct command-line access to the platform. Wireless sensor nodes firmwares can be constructed from source and deployed on reserved nodes, application activity can be controlled and observed, power consumption or radio interference can be measured using the offered tools. IoT-LAB is part of the FIT experimental platform, a set of supplementary elements that enable experimentation on innovative services for academic and industrial users. +IoT-LAB testbed~\cite{ref184,ref185} supplies a very large scale infrastructure service appropriate for evaluating small wireless sensor devices and heterogeneous communicating objects. IoT-LAB includes more than 2700 wireless sensor nodes deployed in six different regions in France. A different kinds of wireless sensor nodes are available, with different processor architectures (MSP430, STM32, and Cortex-A8) and different wireless chips (802.15.4 PHY @ 800 MHz or 2.4 GHz). Sensor nodes are either mobile or fixed and can be used in different topologies throughout all the regions. +IoT-LAB provides web-based reservation and tooling for protocols and applications development, along with direct command-line access to the platform. Wireless sensor nodes firmware can be constructed from source and deployed on reserved nodes, application activity can be controlled and observed, power consumption or radio interference can be measured using the offered tools. IoT-LAB is part of the FIT experimental platform, a set of supplementary elements that enable experimentation with innovative services for academic and industrial users. \end{enumerate} -A testbed is a large evaluation tool. However, to construct a suitable tool with capable architecture, the information about wanted requirement is required. Many existing testbeds are developed without obvious definition of requirements. Therefore, the research efforts maybe halted due to the lack in the precisely defined requirements~\cite{ref186}. The tests and experiments on a large number of sensor nodes lead to a scalability challenges and a large amount of data for logging, debugging and measurement output. There are no enough tools so as to deal (semi-)automatically with the amount of data and supporting the researchers to evaluate their systems. For evaluating the systems and protocols on a large sensor networks, the simulation tools are the better choice due to the costs for hardware and maintenance~\cite{ref186}. +A testbed is a large evaluation tool. However, to construct a suitable tool with capable architecture, the information about wanted requirement is required. Many existing testbeds are developed without obvious definition of requirements. Therefore, the research efforts may be halted due to the lack of the precisely defined requirements~\cite{ref186}. The tests and experiments on a large number of sensor nodes lead to a scalability challenge, and a large amount of data for logging, debugging, and measurement output. There are no enough tools so as to deal (semi-)automatically with the amount of data and supporting the researchers to evaluate their systems. For evaluating the systems and protocols on a large sensor networks, the simulation tools are the better choice due to the costs for hardware and maintenance~\cite{ref186}. -Several sensor nodes testbeds are found in order to support WSNs research efforts, but only few of them provide a common evaluation goals for a large number of users~\cite{ref187,ref181}. However, all the WSN testbeds are shared in general properties such as: the number of sensors are at most hundreds and sometimes only tens of nodes are involved in the typical testbeds; the sensor nodes are placed in a static grid topology; metrics and debug information are obtained via wired connections. Therefore, the WSN testbeds impose strong limitations on the WSNs in terms of size and topology. Moreover, the cost of performing an experiment on a testbed is much higher than on a simulation because setting-up the experiments, instrumenting the nodes, gathering the metrics on the performance, and so on are so expensive. Therefore, the simulation tools stay the most practical tools to obtain a feedback on the performance of a new solution~\cite{ref180}. +Several sensor nodes testbeds are found in order to support WSNs research efforts, but only a few of them provide common evaluation goals for a large number of users~\cite{ref187,ref181}. However, all the WSN testbeds are shared in general properties, such as the number of sensors are at most hundreds and sometimes only tens of nodes are involved in the typical testbeds; the sensor nodes are placed in a static grid topology; metrics and debug information are obtained via wired connections. Therefore, the WSN testbeds impose strong limitations on the WSNs in terms of size and topology. Moreover, the cost of performing an experiment on a testbed is much higher than on a simulation because setting up the experiments, instrumenting the nodes, gathering the metrics on the performance, and so on are so expensive. Hence, the simulation tools stay the most practical tools to obtain a feedback on the performance of a new solution~\cite{ref180}. -- 2.39.5