From d884c983d0b0fa2e556454780ccf3fa32c6d9b5c Mon Sep 17 00:00:00 2001 From: ali Date: Mon, 11 May 2015 18:32:39 +0200 Subject: [PATCH] Update by Ali --- CHAPITRE_02.tex | 323 +++++++++++++++++++++++------------------------ INTRODUCTION.tex | 6 +- Thesis.toc | 8 +- bib.bib | 10 ++ 4 files changed, 175 insertions(+), 172 deletions(-) diff --git a/CHAPITRE_02.tex b/CHAPITRE_02.tex index d13ee68..29423d6 100644 --- a/CHAPITRE_02.tex +++ b/CHAPITRE_02.tex @@ -12,9 +12,10 @@ The main objective of deploying a large number of wireless sensor nodes in the target area of interest is to construct a WSN, which is responsible for monitoring the sensing field. The coverage problem represents the principle requirement in these applications. The main question shared by these applications is how can the deployed wireless sensor nodes monitor the physical phenomenon properly. The coverage can be considered as one of the QoS (Quality of Service) parameters, and it is closely related to energy consumption. It represents the sensing task supplied by the wireless sensors in WSNs. -The energy resource limitation of wireless sensor nodes has been considered as a big challenge. So, it is desired to operate the WSN with less energy consumption whilst fulfilling the coverage requirement. The main objective of scattering the wireless sensor nodes over the area of interest is to collect the sensed data of the physical phenomena for processing or reporting, where there are two types of reporting for sensed data in WSNs~\cite{ref138}: event-driven and on-demand. In the latter, the monitoring base station start the reporting operation by transmitting a request to the wireless sensor nodes so as to send their sensed data to the base station; like in inventory tracking application. In the former, the reporting operation is triggered by one or more wireless sensor nodes within the physical phenomena by transmitting their sensed data to the controlling base station; for instance, the forest fire detection application. In hybrid scheme of the two types is more flexible. +The energy resource limitation of wireless sensor nodes has been considered as a big challenge. So, it is desired to operate the WSN with less energy consumption whilst fulfilling the coverage requirement. The main objective of scattering the wireless sensor nodes over the area of interest is to collect the sensed data of the physical phenomena for processing or reporting, where there are two types of reporting for sensed data in WSNs~\cite{ref138}: event-driven and on-demand. In the latter, the monitoring base station starts the reporting operation by transmitting a request to the wireless sensor nodes so as to send their sensed data to the base station; like in inventory tracking application. In the former, the reporting operation is triggered by one or more wireless sensor nodes within the physical phenomena by transmitting their sensed data to the controlling base station; for instance, the forest fire detection application. +%In hybrid scheme of the two types is more flexible. -The ultimate goal of the coverage is to ensure that each point in the sensing field is within the sensing range of at least one sensor node. Some applications require high reliability to perform their tasks, so they need that every point in the sensing field is covered by more than one sensor node. In order to avoid a lack of monitoring in the area of interest, it is necessary that WSNs are deployed with high density so as to exploit the overlapping among the sensor nodes and to prevent malfunction of sensor nodes in severe environments. The overlap can be exploited by choosing the minimum number of sensor nodes to perform the main tasks of the WSN in the sensing field and putting the remaining sensor nodes in very low power sleep mode so as to prolong the network lifetime. This exploitation manner, which is called sensor activity scheduling, aims to set the activity state of each sensor node in the WSN so that the sensing field can be monitored for as long as possible. The required level of coverage should be guaranteed by the activity-based scheduling scheme~\cite{ref139}. Many scheduling algorithms have been described in~\cite{ref58,ref57}. +The ultimate goal of the coverage is to ensure that each point in the sensing field is within the sensing range of at least one sensor node. Some applications require high reliability to perform their tasks, so they need that each point in the sensing field is covered by more than one sensor node. In order to avoid a lack of monitoring in the area of interest, it is necessary that WSNs are deployed with high density so as to exploit the overlapping among the sensor nodes and to prevent malfunction of sensor nodes in severe environments. The overlap can be exploited by choosing the minimum number of sensor nodes to perform the main tasks of the WSN in the sensing field and putting the remaining sensor nodes in very low power sleep mode so as to prolong the network lifetime. This exploitation manner, which is called sensor activity scheduling, aims to set the activity state of each sensor node in the WSN so that the sensing field can be monitored for as long as possible. The required level of coverage should be guaranteed by the activity-based scheduling scheme~\cite{ref139}. Many scheduling algorithms have been described in~\cite{ref58,ref57}. %This dissertation focuses on the problem of covering the area of interest as long as possible. Several proposed approaches to extend the network lifetime whilst maintaining the coverage have been viewed in this chapter. M. Cardei and J. Wu~\cite{ref113} have been surveyed the different coverage formulation models and their assumptions, as well as the solutions provided. In~\cite{ref105}, several coverage problems are presented from different angles, where the models and assumptions, as well as proposed solutions in the literatures, are described. In this dissertation, the main contribution of previous works that deal with the coverage problem have been addressed. We end this chapter by focusing on two algorithms, GAF~\cite{GAF} and DESK~\cite{DESK}, since they have been used for comparison against our coverage protocols. @@ -22,12 +23,8 @@ The ultimate goal of the coverage is to ensure that each point in the sensing fi %\section{Coverage Algorithms} %\label{ch2:sec:02} -\indent This chapter is dedicated to the various approaches proposed in the -literature for the coverage lifetime maximization problem, where the objective -is to optimally schedule sensors' activities in order to extend network lifetime -in WSNs. -In~\cite{ref105}, several coverage problems are presented from different angles, where the models and assumptions, as well as proposed solutions in the literatures, are described. -M. Cardei and J. Wu~\cite{ref113} survey the different coverage formulation models and their assumptions, as well as the solutions provided. They provide a taxonomy for coverage algorithms in WSNs according to several design choices: +\indent This chapter is dedicated to the various approaches proposed in the literature for the coverage lifetime maximization problem, where the objective +is to optimally schedule sensors' activities in order to extend network lifetime in WSNs. In~\cite{ref105}, several coverage problems are presented from different points of view, where the models and assumptions, as well as proposed solutions in the literatures, are described. M. Cardei and J. Wu~\cite{ref113} survey the different coverage formulation models and their assumptions, as well as the solutions provided. They provide a taxonomy for coverage algorithms in WSNs according to several design choices: \begin{enumerate} [(i)] \item Sensors scheduling algorithm implementation, i.e. centralized or distributed/localized algorithms. @@ -41,13 +38,15 @@ M. Cardei and J. Wu~\cite{ref113} survey the different coverage formulation mode From our point of view, the choice of non-disjoint or disjoint cover sets (sensors participate or not in many cover sets), coverage type (area, target, or barrier), coverage ratio, coverage degree (how many sensors are required to cover a target or an area) can be added to the above list. -Once sensor nodes are deployed, a coverage algorithm is run to schedule the sensor nodes into cover sets so as to maintain sufficient coverage in the area of interest and extend the network lifetime. The WSN applications require either complete or partial area coverage, while for target coverage, all the target should be covered. This chapter concentrates only on area coverage and target coverage problems because it is possible to transform the area coverage problem to target (or point) coverage problem and vice versa. We have excluded the barrier coverage problem from this discussion because it is outside the scope of this dissertation. -This dissertation focuses mainly on the area coverage problem, where the ultimate goal is to choose the minimum number of sensor nodes to cover the whole sensing field. +Once sensor nodes are deployed, a coverage algorithm is run to schedule the sensor nodes into cover sets so as to maintain sufficient coverage in the area of interest and extend the network lifetime. +%The WSN applications require either complete or partial area coverage, while for target coverage, all the target should be covered. +This chapter concentrates only on area coverage and target coverage problems because it is possible to transform the area coverage problem to target (or point) coverage problem and vice versa. We have excluded the barrier coverage problem from this discussion because it is outside the scope of this dissertation. +This dissertation mainly focuses on the area coverage problem, where the ultimate goal is to choose the minimum number of sensor nodes to cover the whole sensing field. %We have focused mainly on the area coverage problem. Therefore, we represent the sensing area of each sensor node in the sensing field as a set of primary points and then achieving full area coverage by covering all the points in the sensing field. The ultimate goal of the area coverage problem is to choose the minimum number of sensor nodes to cover the whole sensing region and prolonging the lifetime of the WSN. -Many centralized and distributed coverage algorithms for activity scheduling have been proposed in the literature, based on different assumptions and objectives. In centralized algorithms, a central controller makes all decisions and distributes the results to sensor nodes. The centralized algorithms have the advantage of requiring very low processing power from the sensor nodes which have usually limited processing capabilities. On the contrary, the exchange of packets in large WSNs may consume a considerable amount of energy in a centralized approach compared to a distributed one. Moreover, centralized approaches usually suffer from the scalability and reliability problems, making them less competitive as the network size increases. +Many centralized and distributed coverage algorithms for activity scheduling have been proposed in the literature, based on different assumptions and objectives. In centralized algorithms, a central controller makes all decisions and distributes the results to sensor nodes. The centralized algorithms have the advantage of requiring very low processing power from the sensor nodes which have usually limited processing capabilities. On the contrary, the exchange of packets in large WSNs may consume a considerable amount of energy in a centralized approach compared to a distributed one. Moreover, centralized approaches usually suffer from the scalability and reliability problems, making them less competitive than the network size increases. -In a distributed algorithms, on the other hand, the decision process is localized in each individual sensor node, and only informations from neighboring nodes are used for the activity decision. Compared to centralized algorithms, distributed algorithms reduce the energy consumption required for radio communication and detection accuracy whilst the energy consumption for computation is increased. Overall, distributed algorithms are more suitable for large-scale networks, but it can not give an optimal (or near-optimal) solution based only on local informations. Moreover, a recent study conducted in \cite{ref226} concludes that there is a threshold in terms of network size to switch from a distributed to a centralized algorithm. Table~\ref{Table0:ch2} shows a comparison between centralized coverage algorithms and distributed coverage algorithms. +In distributed algorithms, on the other hand, the decision process is localized in each individual sensor node, and only informations from neighboring nodes are used for the activity decision. Compared to centralized algorithms, distributed algorithms reduce the energy consumption required for radio communication and detection accuracy whilst the energy consumption for computation is increased. Overall, distributed algorithms are more suitable for large-scale networks, but it can not give an optimal (or near-optimal) solution based only on local informations. Moreover, a recent study conducted in \cite{ref226} concludes that there is a threshold in terms of network size to switch from a distributed to a centralized algorithm. Table~\ref{Table0:ch2} shows a comparison between centralized coverage algorithms and distributed coverage algorithms. \begin{table}[h!] \caption{Centralized Coverage Algorithms vs Distributed Coverage Algorithms} @@ -81,41 +80,147 @@ In this dissertation, the sensing field is divided into smaller subregions using Several algorithms to maintain the coverage and maximize the network lifetime were proposed in~\cite{ref113,ref101,ref103,ref105}. Table \ref{x11} summarizes the main characteristics of some coverage approaches in previous literatures. -In this table \ref{x11}, the "SET K-COVER" characteristic refers to the maximum number of disjoint or non-disjoint sets of sensors such that each set cover can assure the coverage for the whole region. -The K-COVER algorithm provides a solution with K cover sets in each execution. The k-coverage characteristic refers to the fact that every point inside the monitored area is always covered by at least k active sensors. +In this table, the "SET K-COVER" characteristic refers to the maximum number of disjoint or non-disjoint sets of sensors such that each set cover can ensure the coverage for the whole region. The K-COVER algorithm provides a solution with K cover sets in each execution. The k-coverage characteristic refers to the fact that every point inside the monitored area is always covered by at least k active sensors. -\section{Centralized Algorithms} -\label{ch2:sec:02} -The major idea of most centralized algorithms is to divide/organize the sensors into a suitable number of cover sets, where each set completely covers an interest region and to activate these cover sets successively. The centralized algorithms always provide optimal or near-optimal solution since the algorithm has a global view of the whole network. Energy-efficient centralized approaches differ according to several criteria \cite{ref113}, such as the coverage objective (target coverage or area coverage), the node deployment method (random or deterministic), and the heterogeneity of sensor nodes (common sensing range, common battery lifetime). +\begin{table}[h!] -The first algorithms proposed in the literature consider that the cover sets are disjoint: a sensor node appears in exactly one of the generated cover sets~\cite{ref114,ref115,ref116}. For instance, Slijepcevic and Potkonjak \cite{ref116} propose an algorithm, which allocates sensor nodes in mutually independent sets to monitor an area divided into several fields. Their algorithm builds a cover set by including in priority the sensor nodes which cover critical fields, that is to say, fields that are covered by the smallest number of sensors. The time complexity of their heuristic is $O(n^2)$ where $n$ is the number of sensors. M. Cardei et al.~\cite{ref227}, suggest a graph coloring technique to achieve energy savings by organizing the sensor nodes into a maximum number of disjoint dominating sets, which are activated successively. They have defined the maximum disjoint dominating sets problem and they have produced a heuristic that computes the disjoint cover sets so as to monitor the area of interest. The dominating sets do not guarantee the coverage of the whole region of interest. Abrams et al.~\cite{ref114} design three approximation algorithms for a variation of the set k-cover problem, where the objective is to partition the sensors into covers such that the number of covers that include an area, summed over all areas, is maximized. -Their work is built upon previous work in~\cite{ref116} and the generated cover sets do not provide complete coverage of the monitoring zone. +\begin{flushleft} +\centering +\caption{Main characteristics of some coverage approaches in literature.} +\label{x11} + \begin{tabular}{@{} cl*{13}c @{}} + & & \\ + & & \multicolumn{10}{c}{Characteristics} \\[2ex] + \multicolumn{2}{c}{\footnotesize Coverage Approach} & \mcrot{1}{l}{50}{\footnotesize Distributed} & \mcrot{1}{l}{50}{\footnotesize Centralized} & \mcrot{1}{l}{50}{ \footnotesize Area coverage} & \mcrot{1}{l}{50}{\footnotesize Target coverage} & \mcrot{1}{l}{50}{\footnotesize k-coverage} & \mcrot{1}{l}{50}{\footnotesize Heterogeneous nodes}& \mcrot{1}{l}{50}{\footnotesize Homogeneous nodes} & \mcrot{1}{l}{50}{\footnotesize Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize Non-Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize SET K-COVER } & \mcrot{1}{l}{50}{\footnotesize Work in Rounds or Periods} & \mcrot{1}{l}{50}{\footnotesize Adjustable Radius} \\ + \cmidrule[1pt]{2-14} -The authors in~\cite{ref115} propose a heuristic to compute the Disjoint Set Covers (DSC). In order to compute the maximum number of covers, they first transform DSC into a maximum-flow problem, which is then formulated as a Mixed Integer Programming problem (MIP). Based on the solution of the MIP, they design a heuristic to compute the final number of covers. The results show a slight performance improvement in terms of the number of produced DSC in comparison to~\cite{ref116}, but it incurs higher execution time due to the complexity of the mixed integer programming solving. Zorbas et al. \cite{ref228} present B\{GOP\}, a centralized target coverage algorithm introducing sensor candidate categorization depending on their coverage status and the notion of critical target to call targets that are associated with a small number of sensors. The total running time of their heuristic is $0(m n^2)$, where -$n$ is the number of sensors and $m$ the number of targets. Compared to algorithm's results of Slijepcevic and Potkonjak \cite{ref116}, their heuristic produces more cover sets with a slight growth rate in execution time. L. Liu et al.~\cite{ref150} formulate the maximum disjoint sets for maintaining target coverage and connectivity problem in WSN. They propose a graph theoretical framework to study the joint problem of connectivity and coverage in a WSN with random deployment of nodes with no restrictions on the sensing and communication ranges of nodes. They propose heuristic algorithms to find the suitable number of nodes to guarantee connectivity and coverage while maximizing network lifetime. -%This work did not take into account the sensor node failure, which is an unpredictable event because the two solutions are full centralized algorithms. -Y. Li et al.~\cite{ref142} present a framework with heuristic strategies to solve the area coverage problem. The framework converts any complete coverage problem to a partial coverage one with any coverage ratio. They execute a complete coverage algorithm to find full coverage sets with virtual radii and then transform the coverage sets to a partial coverage sets by adjusting sensing radii. This framework has four strategies, two of them are designed for network, where the sensors have fixed sensing range and the other two are for network, where the sensors have adjustable sensing range. The properties of the algorithms can be maintained by this framework and the transformation process has a low execution time. The simulation results validate the efficiency of the four proposed strategies. More recently, Deschinkel and Hakem \cite{ref229} introduce a near-optimal heuristic algorithm for solving the target coverage problem in WSN. The sensor nodes are organized into disjoint cover sets, each capable of monitoring all the targets of the region of interest. %Those covers sets are scheduled periodically. -Their algorithm is able to construct the different cover sets in parallel. The results show that their algorithm achieves near-optimal solutions compared to the optimal ones obtained by the resolution of an integer programming problem. -%exact method. +& \tiny Z. Abrams et al. (2004)~\cite{ref114} & \OK &\OK & \OK & & & &\OK & \OK & & \OK & & &\\ + +& \tiny M. Cardei and D. Du (2005)~\cite{ref115} & & \OK & & \OK & & & \OK & \OK & & \OK & & &\\ + +& \tiny S. Slijepcevic and M. Potkonjak (2001)~\cite{ref116} & & \OK & \OK & & & & \OK & \OK & & \OK & & &\\ + +& \tiny Manjun and A. K. Pujari (2011)~\cite{ref117} & & \OK & & \OK & & & \OK & & \OK & & & &\\ + +& \tiny M. Yang and J. Liu (2014)~\cite{ref118} & & \OK & \OK & & & & \OK & & \OK & & & & \\ + +& \tiny S. Wang et al. (2010)~\cite{ref144} & & \OK & \OK & & & & \OK & & \OK & & \OK & & \\ + +& \tiny C. Lin et al. (2010)~\cite{ref147} & & \OK & \OK & & & & \OK & & \OK & & & & \\ + +& \tiny S. A. R. Zaidi et al. (2009)~\cite{ref148} & & \OK & \OK & & & & \OK & & \OK & & & & \\ + +& \tiny Y. Li et al. (2011)~\cite{ref142} & & \OK & \OK & & & \OK & \OK & \OK & & \OK & & \OK &\\ + +& \tiny H. M. Ammari and S. K. Das (2012)~\cite{ref152} & \OK & \OK & \OK & & \OK & & \OK & & \OK & & \OK & &\\ + +& \tiny L. Liu et al. (2010)~\cite{ref150} & & \OK & & \OK & & \OK & & \OK & & \OK & & &\\ + +& \tiny H. Cheng et al. (2014)~\cite{ref119} & & \OK & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny M. Rebai et al. (2014)~\cite{ref141} & & \OK & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny L. Aslanyan et al. (2013)~\cite{ref151} & & \OK & \OK & & & & \OK & & \OK & \OK & \OK & &\\ + +& \tiny X. Liu et al. (2014)~\cite{ref143} & & \OK & \OK & & & & \OK & & \OK & \OK & \OK & &\\ + +& \tiny F. Castano et al. (2013)~\cite{ref120} & & \OK & & \OK & & & \OK & & \OK & \OK & & &\\ + +& \tiny A. Rossi et al. (2012)~\cite{ref121} & & \OK & & \OK & & \OK & \OK & & \OK & \OK & & \OK &\\ + +& \tiny K. Deschinkel et al. (2012)~\cite{ref122} & & \OK & & \OK & & & \OK & & \OK & \OK & & &\\ + + + +& \tiny A. Gallais et al. (2008)~\cite{ref123} & \OK & & \OK & & & \OK & \OK & & \OK & & \OK & \OK &\\ + +& \tiny D. Tian and N. D. Georganas (2002)~\cite{ref124} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny F. Ye et al. (2003)~\cite{ref125} & \OK & & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny H. Zhang and J. C. Hou (2005)~\cite{ref126} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny W. B. Heinzelman et al. (2002)~\cite{ref109} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny T. Yardibi and E. Karasan (2010)~\cite{ref127} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ +& \tiny S. K. Prasad and A. Dhawan (2007)~\cite{ref128} & \OK & & & \OK & & & \OK & & \OK & & \OK & &\\ -In the case of non-disjoint algorithms~\cite{ref117}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets. For instance, Cardei et al.~\cite{ref167} -present a Linear Programming (LP) solution and a greedy approach to -extend the sensor network lifetime by organizing the sensors into a -maximal number of non-disjoint cover sets. Simulation results show -that by allowing sensors to participate in multiple sets, the network -lifetime increases compared with related work~\cite{ref115}. The authors in~\cite{ref148}, address the problem of minimum cost area coverage in which full coverage is performed by using the minimum number of sensors for an arbitrary geometric shape region. A geometric solution to the minimum cost coverage problem under a deterministic deployment is proposed. The probabilistic coverage solution which provides a relationship between the probability of coverage and the number of randomly deployed sensors in an arbitrarily-shaped region is suggested. -%The authors explained that with a random deployment about seven times more nodes are required to supply full coverage compared to deterministic deployment. -The work in~\cite{ref144} address the area coverage problem by proposing a Geometrically based Activity Scheduling scheme, named GAS, to fully cover the area of interest in WSNs. The authors deal with a small area, called target area coverage, which can be monitored by a single sensor instead of area coverage, which focuses on a large area that should be monitored by many sensors cooperatively. They explain that GAS is capable to monitor the target area by using the fewest number of sensors and it can produce as many cover sets as possible. A novel area coverage method to divide the sensors called Node Coverage Grouping (NCG) is suggested~\cite{ref147}. The sensors in the connectivity group are within sensing range of each other and the data collected by those in the same group are supposed to be similar. They prove that dividing N sensors via NCG into connectivity groups is an NP-hard problem. So, a heuristic algorithm of NCG with time complexity of $O(n^3)$ is proposed. -For some applications, such as monitoring an ecosystem with extremely diversified environment, it might be a premature assumption that sensors near to each other sense similar data. The problem of k-coverage over the area of interest in WSNs is addressed in~\cite{ref152}. It is mathematically formulated and the spatial sensor density for full k-coverage is determined. The relation between the communication range and the sensing range is constructed by this work to retain the k-coverage and connectivity in WSN. After that, four configuration protocols are proposed for treating the k-coverage in WSNs. Simulation results show that their protocols outperform an existing distributed k-coverage configuration protocol. The work presented in~\cite{ref151} solves the area coverage and connectivity problem in sensor networks in an integrated way. The network lifetime is divided into a fixed number of rounds. A coverage bitmap of sensors of the domain is generated in each round and based on this bitmap, it is decided which sensors stay active or go to sleep. They check the connection of the graph via laplacian of the adjacency graph of active sensors in each round. %The generation of coverage bitmap by using Minkowski technique, the network is able to providing the desired ratio of coverage. -They define the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution. +& \tiny S. Misra et al. (2011)~\cite{ref97} & \OK & & \OK & & & & \OK & & \OK & & & &\\ -Recent studies show an increasing interest in the use of exact schemes to solve optimization problems in WSNs \cite{ref230,ref231,ref121,ref122,ref120}. Column Generation (CG) has been widely used to address different versions of Maximum-network Lifetime Problem (MLP). CG decomposes the problem into a Restricted Master Problem (RMP) and a Pricing Subproblem (PS). The former maximizes lifetime using an incomplete set of columns and the latter is used to identify new profitable columns. A. Rossi et al.~\cite{ref121} introduce an efficient implementation of a genetic algorithm based on CG to extend the lifetime and maximize target coverage in wireless sensor networks under bandwidth constraints. The authors show that the use of metaheuristic methods to solve PS in the context of CG allows to obtain optimal solutions quite fast and to produce high-quality solutions when the algorithm is stopped before returning an optimal solution. More recently, F. Castano et al. \cite{ref120} address the maximum network lifetime and the target coverage problem in WSNs with connectivity and coverage constraints. They consider two cases to schedule the activity of a set of sensor nodes, keeping them connected while network lifetime is maximized. First, the full coverage of the targets is required, second only a fraction of the targets has to be monitored at any instant of time. They propose an exact approach based on column generation boosted by a Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighborhood Search (VNS) to address both of these problems. Finally, a multiphase framework combining these two approaches is constructed sequentially using these two heuristics at each iteration of the column generation algorithm. The results show that combining the two heuristic methods enhances the results significantly. +& \tiny P. Berman et al. (2005)~\cite{ref130} & \OK & \OK & \OK & & & & \OK & & \OK & \OK & &\\ -More recently, the authors in~\cite{ref118} consider an area coverage optimization algorithm based on linear programming approach to select the minimum number of working sensor nodes, in order to preserve a maximum coverage and to extend the lifetime of the network. The experimental results show that linear programming can provide a fewest number of active nodes and maximize the network lifetime coverage. M. Rebai et al.~\cite{ref141}, formulate the problem of full grid area coverage problem using two integer linear programming models: the first, is in model that takes into account only the overall coverage constraint; the second, both the connectivity and the full grid coverage constraints are taken into consideration. This work does not consider the energy constraint. H. Cheng et al.~\cite{ref119} define a heuristic area coverage algorithm called Cover Sets Balance (CSB), which chooses a set of active nodes using the tuple (data coverage range, residual energy). Then, they introduce a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. After that, they propose a High Residual Energy First (HREF) node selection algorithm to minimize the number of active nodes. X. Liu et al.~\cite{ref143} explain that in some applications of WSNs such as Structural Health Monitoring (SHM) and volcano monitoring, the traditional coverage model which is a geographic area defined for individual sensors is not always valid. For this reason, they define a generalized area coverage model, which is not required to have the coverage area of individual nodes, but only based on a function deciding whether a set of sensor nodes is capable of satisfy the requested monitoring task for a certain area. They propose two approaches for dividing the deployed nodes into suitable cover sets. +& \tiny J. Lu and T. Suda (2003)~\cite{ref131} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + + + +& \tiny J. Cho et al. (2007)~\cite{ref145} & \OK & & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny V. T. Quang and T. Miyoshi (2008)~\cite{ref146} & \OK & & \OK & & \OK & & \OK & & \OK & & \OK & &\\ + +%\rot{\rlap{Some Proposed Coverage Protocols in previous literatures}} + +& \tiny D. Dong et al. (2012)~\cite{ref149} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny B. Wang et al. (2012)~\cite{ref134} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny Z. Liu et al. (2012)~\cite{ref135} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ + +& \tiny L. Zhang et al. (2013)~\cite{ref136} & \OK & & \OK & & & \OK & \OK & & \OK & & \OK & &\\ + +& \tiny S. He et al. (2012)~\cite{ref137} & \OK & \OK & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny Y. Xu et al. (2001)~\cite{GAF} & \OK & & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny C. Vu et al. (2006)~\cite{DESK} & \OK & & \OK & & \OK & & \OK & & \OK & & \OK & &\\ + +& \tiny X. Deng et al. (2012)~\cite{ref160} & \OK & & \OK & & & & \OK & & \OK & & & &\\ + +& \tiny X. Deng et al. (2005)~\cite{ref133} & \OK & & \OK & & \OK & & \OK & & \OK & & & &\\ + +&\textbf{\textcolor{red}{ \tiny DiLCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & &\textbf{\textcolor{red}{\OK}} & & \\ + +&\textbf{\textcolor{red}{ \tiny MuDiLCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} &\textbf{\textcolor{red}{\OK}} & & \\ + +&\textbf{\textcolor{red}{ \tiny PeCO Protocol (2015)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & &\textbf{\textcolor{red}{\OK}} & & \\ + + \cmidrule[1pt]{2-14} + \end{tabular} + \end{flushleft} + + + +\end{table} + + + + +\section{Centralized Algorithms} +\label{ch2:sec:02} +The major idea of most centralized algorithms is to divide/organize the sensors into a suitable number of cover sets and to activate these cover sets successively. The centralized algorithms always provide optimal or near-optimal solution since the algorithm has a global view of the whole network. Energy-efficient centralized approaches differ according to several criteria \cite{ref113}, such as the coverage objective (target coverage or area coverage), the node deployment method (random or deterministic), and the heterogeneity of sensor nodes (common sensing range, common battery lifetime). + +The first algorithms proposed in the literature consider that the cover sets are disjoint: a sensor node appears in exactly one of the generated cover sets~\cite{ref114,ref115,ref116,ref227}. For instance, Slijepcevic and Potkonjak \cite{ref116} propose an algorithm, which allocates sensor nodes in mutually independent sets to monitor an area divided into several fields. Their algorithm builds a cover set by including in priority the sensor nodes which cover critical fields, that is to say, fields that are covered by the smallest number of sensors. The time complexity of their heuristic is $O(n^2)$ where $n$ is the number of sensors. +%%%M. Cardei et al.~\cite{ref227}, suggest a graph coloring technique to achieve energy savings by organizing the sensor nodes into a maximum number of disjoint dominating sets, which are activated successively. They have defined the maximum disjoint dominating sets problem and they have produced a heuristic that computes the disjoint cover sets so as to monitor the area of interest. The dominating sets do not guarantee the coverage of the whole region of interest. Abrams et al.~\cite{ref114} design three approximation algorithms for a variation of the set k-cover problem, where the objective is to partition the sensors into covers so that the number of covers that include an area, summed over all areas, is maximized. Their work is built upon previous work in~\cite{ref116} and the generated cover sets do not provide complete coverage of the monitoring zone. +%%%The authors in~\cite{ref115} propose a heuristic to compute the Disjoint Set Covers (DSC). In order to compute the maximum number of covers, they first transform DSC into a maximum-flow problem, which is then formulated as a Mixed Integer Programming problem (MIP). Based on the solution of the MIP, they design a heuristic to compute the final number of covers. The results show a slight performance improvement in terms of the number of produced DSC in comparison to~\cite{ref116}, but it incurs higher execution time due to the complexity of the mixed integer programming solving. Zorbas et al. \cite{ref228} present B\{GOP\}, a centralized target coverage algorithm introducing sensor candidate categorization depending on their coverage status and the notion of critical target to call targets that are associated with a small number of sensors. The total running time of their heuristic is $0(m n^2)$, where $n$ is the number of sensors and $m$ the number of targets. Compared to algorithm's results of Slijepcevic and Potkonjak \cite{ref116}, their heuristic produces more cover sets with a slight growth rate in execution time. +L. Liu et al.~\cite{ref150} formulate the maximum disjoint sets for maintaining target coverage and connectivity problem in WSN. They propose a graph theoretical framework to study the joint problem of connectivity and coverage in a WSN with random deployment of nodes with no restrictions on the sensing and communication ranges of nodes. They propose heuristic algorithms to find the suitable number of nodes to guarantee connectivity and coverage while maximizing network lifetime. +Y. Li et al.~\cite{ref142} present a framework with heuristic strategies to solve the area coverage problem. The framework converts any complete coverage problem into a partial coverage one with any coverage ratio. They execute a complete coverage algorithm to find full coverage sets with virtual radii and then transform the coverage sets to a partial coverage sets by adjusting sensing radii. This framework has four strategies, two of them are designed for network, where the sensors have fixed sensing range and the other two are for network, where the sensors have adjustable sensing range. The properties of the algorithms can be maintained by this framework and the transformation process has a low execution time. The simulation results validate the efficiency of the four proposed strategies. More recently, Deschinkel and Hakem \cite{ref229} introduce a near-optimal heuristic algorithm for solving the target coverage problem in WSN. The sensor nodes are organized into disjoint cover sets, each one is capable of monitoring all the targets of the region of interest. Their algorithm is able to construct the different cover sets in parallel. The results show that their algorithm achieves near-optimal solutions compared to the optimal ones obtained by the resolution of an integer programming problem. +%exact method. + + +In the case of non-disjoint algorithms~\cite{ref117,ref167,ref144,ref147,ref118}, sensors may participate in more than one cover set. In some cases, this may prolong the lifetime of the network in comparison to the disjoint cover set algorithms, but designing algorithms for non-disjoint cover sets generally induces a higher order of complexity. Moreover, in case of a sensor's failure, non-disjoint scheduling policies are less resilient and reliable because a sensor may be involved in more than one cover sets. For instance, +%%%Cardei et al.~\cite{ref167} present a Linear Programming (LP) solution and a greedy approach to extend the sensor network lifetime by organizing the sensors into a maximal number of non-disjoint cover sets. Simulation results show that by allowing sensors to participate in multiple sets, the network lifetime increases compared with related work~\cite{ref115}. +The authors in~\cite{ref148}, address the problem of minimum cost area coverage in which full coverage is performed by using the minimum number of sensors for an arbitrary geometric shape region. A geometric solution to the minimum cost coverage problem under a deterministic deployment is proposed. The probabilistic coverage solution which provides a relationship between the probability of coverage and the number of randomly deployed sensors in an arbitrarily-shaped region is suggested. +%%%The work in~\cite{ref144} addresses the area coverage problem by proposing a Geometrically based Activity Scheduling scheme, named GAS, to fully cover the area of interest in WSNs. The authors deal with a small area, called target area coverage, which can be monitored by a single sensor instead of area coverage, which focuses on a large area that should be monitored by many sensors cooperatively. They explain that GAS is capable to monitor the target area by using the fewest number of sensors and it can produce as many cover sets as possible. A novel area coverage method to divide the sensors called Node Coverage Grouping (NCG) is suggested~\cite{ref147}. The sensors in the connectivity group are within sensing range of each other and the data collected by those in the same group are supposed to be similar. They prove that dividing N sensors via NCG into connectivity groups is an NP-hard problem. So, a heuristic algorithm of NCG with time complexity of $O(n^3)$ is proposed. For some applications, such as monitoring an ecosystem with extremely diversified environment, it might be a premature assumption that sensors near to each other sense similar data. +The problem of k-coverage over the area of interest in WSNs is addressed in~\cite{ref152}. It is mathematically formulated and the spatial sensor density for full k-coverage is determined. The relation between the communication range and the sensing range is constructed by this work to retain the k-coverage and connectivity in WSN. After that, four configuration protocols are proposed for treating the k-coverage in WSNs. Simulation results show that their protocols outperform an existing distributed k-coverage configuration protocol. The work presented in~\cite{ref151} solves the area coverage and connectivity problem in sensor networks in an integrated way. The network lifetime is divided into a fixed number of rounds. A coverage bitmap of sensors of the domain is generated in each round and based on this bitmap, it is decided which sensors stay active or go to sleep. They check the connection of the graph via laplacian of the adjacency graph of active sensors in each round. They define the connected coverage problem as an optimization problem and a centralized genetic algorithm is used to find the solution. Recent studies show an increasing interest in the use of exact schemes to solve optimization problems in WSNs \cite{ref230,ref231,ref121,ref122,ref120}. Column Generation (CG) has been widely used to address different versions of Maximum-network Lifetime Problem (MLP). CG decomposes the problem into a Restricted Master Problem (RMP) and a Pricing Subproblem (PS). The former maximizes lifetime using an incomplete set of columns and the latter is used to identify new profitable columns. +%%%A. Rossi et al.~\cite{ref121} introduce an efficient implementation of a genetic algorithm based on CG to extend the lifetime and maximize target coverage in wireless sensor networks under bandwidth constraints. The authors show that the use of metaheuristic methods to solve PS in the context of CG allows to obtain optimal solutions quite fast and to produce high-quality solutions when the algorithm is stopped before returning an optimal solution. More recently, + F. Castano et al. \cite{ref120} address the maximum network lifetime and the target coverage problem in WSNs with connectivity and coverage constraints. They consider two cases to schedule the activity of a set of sensor nodes, keeping them connected while network lifetime is maximized. First, the full coverage of the targets is required, second only a fraction of the targets has to be monitored at any instant of time. They propose an exact approach based on column generation boosted by a Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable Neighborhood Search (VNS) to address both of these problems. Finally, a multiphase framework combining these two approaches is constructed sequentially using these two heuristics at each iteration of the column generation algorithm. The results show that combining the two heuristic methods enhances the results significantly. + +More recently, +%%%the authors in~\cite{ref118} consider an area coverage optimization algorithm based on linear programming approach to select the minimum number of working sensor nodes, in order to preserve a maximum coverage and to extend the lifetime of the network. The experimental results show that linear programming can provide a fewest number of active nodes and maximize the network lifetime coverage. +M. Rebai et al.~\cite{ref141}, formulate the problem of full grid area coverage problem using two integer linear programming models: the first, is in model that takes into account only the overall coverage constraint; the second, both the connectivity and the full grid coverage constraints are taken into consideration. This work does not consider the energy constraint. H. Cheng et al.~\cite{ref119} define a heuristic area coverage algorithm called Cover Sets Balance (CSB), which chooses a set of active nodes using the tuple (data coverage range, residual energy). Then, they introduce a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. After that, they propose a High Residual Energy First (HREF) node selection algorithm to minimize the number of active nodes. X. Liu et al.~\cite{ref143} explain that in some applications of WSNs such as Structural Health Monitoring (SHM) and volcano monitoring, the traditional coverage model which is a geographic area defined for individual sensors is not always valid. For this reason, they define a generalized area coverage model, which is not required to have the coverage area of individual nodes, but only based on a function deciding whether a set of sensor nodes is capable of satisfy the requested monitoring task for a certain area. They propose two approaches for dividing the deployed nodes into suitable cover sets. @@ -128,25 +233,25 @@ More recently, the authors in~\cite{ref118} consider an area coverage optimizati %In distributed and localized coverage algorithms, the required computation to schedule the activity of sensor nodes will be done by the cooperation among neighboring nodes. These algorithms may require more computation power for the processing by the cooperating sensor nodes, but they are more scalable for large WSNs. -Many distributed algorithms have been developed to perform the scheduling so as to preserve coverage, see for example \cite{ref123,ref124,ref125,ref126,ref109,ref127,ref128,ref97}. Localized and distributed algorithms generally result in non-disjoint set covers. +Many distributed algorithms have been developed to perform the scheduling to preserve coverage, see for example \cite{ref123,ref124,ref125,ref126,ref109,ref127,ref128,ref97}. Localized and distributed algorithms generally result in non-disjoint set covers. -X. Deng et al. \cite{ref133} formulate the area coverage problem as a decision problem, whose goal is to determine whether every point in the area of interest is monitored by at least k sensors. The authors prove that if the perimeters of sensors are sufficiently covered it will be the case for the whole area. They provide an algorithm in $O(nd~log~d)$ time to compute the perimeter coverage of each sensor, where $d$ denotes the maximum number of sensors that are neighbors of a sensor and $n$ is the total number of sensors in the network. +X. Deng et al. \cite{ref133} formulate the area coverage problem as a decision problem, whose goal is to determine if all points in the area of interest are monitored by at least k sensors. The authors prove that if the perimeters of sensors are sufficiently covered it will be the case for the whole area. They provide an algorithm in $O(nd~log~d)$ time to compute the perimeter coverage of each sensor, where $d$ denotes the maximum number of sensors that are neighbors of a sensor and $n$ is the total number of sensors in the network. %Their solutions can be translated to distributed protocols to solve the coverage problem. Distributed algorithms typically operate in rounds for a predetermined duration. At the beginning of each round, a sensor exchanges information with its neighbors and makes a decision to either remain turned on or to go to sleep for the round. This decision is basically made on simple greedy criteria like the largest uncovered area \cite{ref130} or maximum uncovered targets \cite{ref131}. Cho et al.~\cite{ref145} propose a distributed node scheduling protocol, which can retain sensing coverage needed by applications and increases network lifetime via putting in sleep mode some redundant nodes. In this work, the Effective Sensing Area (ESA) concept of a sensor node is used, which refers to the sensing area that is not overlapping with another sensor's sensing area. A sensor node can determine whether it will be active or turned off by computing its ESA. The suggested work permits sensor nodes to be in sleep mode opportunistically whilst fulfilling the needed sensing coverage. The authors in~\cite{ref146} define a Maximum Sensing Coverage Region problem (MSCR) in WSNs and then propose a distributed algorithm to solve it. The maximum observed area is fully covered by a minimum active sensors. In this work, the major property is to get rid of the redundant sensors in high-density WSNs and putting them in sleep mode. In addition, a smaller number of active sensors is chosen so as to ensure the full area is k-covered, and all events appearing in that area can be precisely and timely detected. This algorithm minimizes the total energy consumption and increases the network lifetime. The Distributed Adaptive Sleep Scheduling Algorithm (DASSA) \cite{ref127} does not require location information of sensors while maintaining connectivity and satisfying a user-defined coverage target. In DASSA, nodes use residual energy levels and feedback from the sink for scheduling the activity of their neighbors. This feedback mechanism reduces the randomness in scheduling that would otherwise occur due to the absence of location information. -A graph theoretical framework for connectivity-based area coverage with configurable coverage granularity is proposed~\cite{ref149}. A new coverage criterion and scheduling approach is proposed based on cycle partition. This method is able to build a sparse coverage set in distributed way by means of only connectivity information. This work considers only that the communication range of the sensor is two times smaller than the sensing one. Shibo et al.~\cite{ref137} express the area coverage problem as a minimum weight submodular set cover problem and propose a Distributed Truncated Greedy Algorithm (DTGA) to solve it. They take advantage from both temporal and spatial correlations between data sensed by different sensors, and leverage prediction, to improve the lifetime. The authors in \cite{ref160} design an energy-efficient approach to area coverage problems by transforming the area coverage problem to the target coverage problem taking into account the intersection points among disks of sensors nodes or between disc of sensor nodes and boundaries. They propose two mechanisms for the converted target coverage problems to produce cover sets covering the sensing +A graph theoretical framework for connectivity-based area coverage with configurable coverage granularity is proposed~\cite{ref149}. A new coverage criterion and scheduling approach is proposed based on cycle partition. This method is able to build a sparse coverage set in distributed way by means of only connectivity information. This work only considers that the communication range of the sensor is two times smaller than the sensing one. Shibo et al.~\cite{ref137} express the area coverage problem as a minimum weight submodular set cover problem and propose a Distributed Truncated Greedy Algorithm (DTGA) to solve it. They take advantage from both temporal and spatial correlations between data sensed by different sensors, and leverage prediction, to improve the lifetime. The authors in \cite{ref160} design an energy-efficient approach to area coverage problems by transforming the area coverage problem to the target coverage problem taking into account the intersection points among disks of sensors nodes or between disc of sensor nodes and boundaries. They propose two mechanisms for the converted target coverage problems to produce cover sets covering the sensing field completely. Simulations results show that this approach can prolong the lifetime of the network compared with other works. The works presented in~\cite{ref134,ref135,ref136} focus on coverage-aware, distributed energy-efficient, and distributed clustering methods respectively, which aim at extending the network lifetime, while the coverage is ensured. -In this dissertation, we focus in more details on two distributed coverage algorithms: GAF and DESK, because we compared our proposed coverage optimization protocols with them during performance evaluation. +In this dissertation, we focus in more details on two distributed coverage algorithms: GAF and DESK, because we compared our proposed coverage optimization protocols with them during performance evaluation. GAF algorithm is chose for comparison as competitor because it is famous, fast, and easy to implement, as well as many authors referred to it in many publications. In addition, DESK algorithm is also selected as competitor in the comparison because it is a full distributed coverage approach. \subsection{Geographical Adaptive Fidelity (GAF)} \label{ch2:sec:03:1} -GAF is developed by Xu et al. \cite{GAF}, it uses geographic location information to divide the area of interest into a fixed square grids. Within each fixed square grid, it keeps only one node staying awake to take the responsibility of sensing and communication. Each sensor node uses its GPS to associate itself with a point in the grid.Figure~\ref{gaf1} gives an example of fixed square grid in GAF. +GAF is developed by Xu et al. \cite{GAF}, it uses geographic location information to divide the area of interest into a fixed square grids. Within each fixed square grid, it keeps only one node staying awake to take the responsibility of sensing and communication. Each sensor node uses its GPS to associate itself with a point in the grid. Figure~\ref{gaf1} gives an example of fixed square grid in GAF. \begin{figure}[h!] \centering @@ -190,12 +295,12 @@ one sensor node (based on the remaining energy of sensor nodes inside the fixed \label{ch2:sec:03:2} % The authors in~\cite{DESK} design a novel distributed heuristic, called Distributed Energy-efficient Scheduling for K-coverage (DESK), which -DESK is a novel distributed heuristic to ensure that the energy consumption among the sensors is balanced and the lifetime maximized while the coverage requirement is satisfied~\cite{DESK}. This heuristic works in rounds, requires only one-hop neighbor information, and each sensor decides its status (Active or Sleep) based on the perimeter coverage model from~\cite{ref133}. +DESK is a novel distributed heuristic to ensure that the energy consumption among the sensors is balanced and the lifetime maximized while the coverage requirement is satisfied~\cite{DESK}. This heuristic works in rounds, it requires only one-hop neighbor information, and each sensor decides its status (Active or Sleep) based on the perimeter coverage model from~\cite{ref133}. %DESK is based on the result from \cite{ref133}. -In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst figure~\ref{figp}~(b) shows the angles corresponding with those arcs in the range [0,2$ \pi $]. According to figure~\ref{figp}~(a) and (b), the coverage level of sensor $s_i$ can be calculated as follows. +In DESK \cite{ref133}, the whole area is K-covered if and only if the perimeters of all sensors are K-covered. The coverage level of a sensor $s_i$ is determined by calculating the angle corresponding to the arc that each of its neighbors covers its perimeter. Figure~\ref{figp}~(a) illuminates such arcs whilst Figure~\ref{figp}~(b) shows the angles corresponding with those arcs in the range [0,2$ \pi $]. According to figure~\ref{figp}~(a) and (b), the coverage level of sensor $s_i$ can be calculated as follows. %via traversing the range from 0 to 2$ \pi $. -For each sensor $s_j$ such that $d(s_i,s_j)$ $<$ $2R_s$, calculate the angle of $s_i$'s arc, denoted by [$\alpha_{j,L}$, $\alpha_{j,R}$], which is perimeter covered by $s_j$, where $\alpha= arccos(d(s_i, s_j)/2R_s)$ and $d(s_i,s_j)$ is the Euclidean distance between $s_i$ and $s_j$. After that, locate the points $\alpha_{j,L}$ and $\alpha_{j,R}$ of each neighboring sensor $s_j$ of $s_i$ on the line segment $[0, 2\pi]$. These points are sorted in ascending order into a list L. Traverse the line segment from 0 to $2\pi$ by visiting each element in the sorted list L from the left to the right and determine the perimeter coverage of $s_i$. Whenever an element $\alpha_{j,L}$ is traversed, the level of perimeter coverage should be increased by one. Whenever an element $\alpha_{j,R}$ is traversed, the level of perimeter coverage should be decreased by one. +For each sensor $s_j$ such that $d(s_i,s_j)$ $<$ $2R_s$, we calculate the angle of $s_i$'s arc, denoted by [$\alpha_{j,L}$, $\alpha_{j,R}$], which is perimeter covered by $s_j$, where $\alpha= arccos(d(s_i, s_j)/2R_s)$ and $d(s_i,s_j)$ is the Euclidean distance between $s_i$ and $s_j$. After that, we locate the points $\alpha_{j,L}$ and $\alpha_{j,R}$ of each neighboring sensor $s_j$ of $s_i$ on the line segment $[0, 2\pi]$. These points are sorted in ascending order into a list L. We traverse the line segment from 0 to $2\pi$ by visiting each element in the sorted list L from the left to the right and determine the perimeter coverage of $s_i$. Whenever an element $\alpha_{j,L}$ is traversed, the level of perimeter coverage should be increased by one. Whenever an element $\alpha_{j,R}$ is traversed, the level of perimeter coverage should be decreased by one. \begin{figure}[h!] @@ -217,7 +322,7 @@ For each sensor $s_j$ such that $d(s_i,s_j)$ $<$ $2R_s$, calculate the angle of \label{desk} \end{figure} -Figure~\ref{desk} shows the DESK network time line. DESK works into rounds fashion. The network lifetime is divided into R rounds. Each round consists of two phases: decision phase and sensing phase. The length of round is dRound that means each sensor node executes this algorithm every dRound unit of time. The decision should be taken within W unit of time, where $W<< dRound$ as shown in figure~\ref{desk}. All the sensor nodes should be temporarily awakened in the decision phase so as to decide their status. Every sensor node $s_i$ decides its status to be active or sleep after $w_i$ of waiting time. The waiting time $w_i$ of node $s_i$ is dynamic and can be changed at any time based on the status of its neighbors, the remaining energy $e_i$ of $s_i$, and its contribution $c_i$ in the coverage level of the network, where $c_i$ is defined as the number of neighbors which need $s_i$ to be active. The waiting time is defined as follows: +Figure~\ref{desk} shows the DESK network time line. DESK works into rounds fashion. The network lifetime is divided into R rounds. Each round consists of two phases: decision phase and sensing phase. The length of round is dRound that means that each sensor node executes this algorithm every dRound unit of time. The decision should be taken within W unit of time, where $W<< dRound$ as shown in Figure~\ref{desk}. All the sensor nodes should be temporarily awakened in the decision phase so as to decide their status. Every sensor node $s_i$ decides its status to be active or sleep after $w_i$ of waiting time. The waiting time $w_i$ of node $s_i$ is dynamic. It can be changed at any time based on the status of its neighbors, the remaining energy $e_i$ of $s_i$, and its contribution $c_i$ in the coverage level of the network. The contribution $c_i$ is defined as the number of neighbors which need $s_i$ to be active. The waiting time is defined as follows: \begin{equation} w_{i} = \left \{ @@ -229,137 +334,25 @@ w_{i} = \left \{ \notag \end{equation} -where $\alpha, \beta,$ and $\eta$ are constant, z is a random number between [0; d], where d is a time duration, to avoid the case where two sensors to be active at the same time. $l(e_i, r_i)$ is the function computing the lifetime of sensor $s_i$ in terms of its current remaining energy $e_i$ and its sensing range $r_i$. -DESK uses two types of messages, mACTIVATE message by which a sensor informs others that it becomes active, and mASK2SLEEP by which a sensor suggests a neighbor to go to sleep due to its uselessness. The concept of uselessness (or redundancy) of a neighbor refers to one that does not contribute to the perimeter coverage of the considered sensor. This means that the segment of the perimeter of the considered sensor overlapping with that neighbor is already covered by active sensors. +where $\alpha, \beta,$ and $\eta$ are constant, z is a random number between [0; d], where d is a time duration, to avoid the case where two sensors are active at the same time. $l(e_i, r_i)$ is the function computing the lifetime of sensor $s_i$ in terms of its current remaining energy $e_i$ and its sensing range $r_i$. +DESK uses two types of messages, mACTIVATE message by which a sensor informs others that it becomes active, and mASK2SLEEP by which a sensor suggests a neighbor to go to sleep due to its uselessness. The concept of uselessness (or redundancy) of a neighbor means that this neighbor does not contribute to the perimeter coverage of the considered sensor. That is to say that the segment of the perimeter of the considered sensor overlapping with that neighbor is already covered by active sensors. -Typically, the algorithm works as follows. At the beginning of each round, there are no active sensors. All sensors are in listening mode, i.e. all wait for the time to make a decision while still doing sensing job. All the sensor nodes collect the information (coordinates, current residual energy, and sensing range) from the one-hop neighbors. Each sensor stores this information into a list L in the increasing order of the angle $\alpha $. Each sensor sets its timer $w_i$ with the assumption that all of its neighbors need it to join the network. When the sensor node $s_j$ joins the network, it broadcasts a mACTIVATE message to inform all of its one hop neighbors about its status change. Its neighbors execute the perimeter coverage model to recalculate their coverage level. If a node finds any neighbor u that is useless in covering its perimeter, i.e., the perimeter that u covers is covered by other active neighbors, it will send mASK2SLEEP message to that sensor u. When the sensor node receives mASK2SLEEP message, it updates its counter $n_i$, contribution $c_i$ to coverage level, and recalculate waiting time $w_i$. It then -check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e., it receives mASK2SLEEP message from all of its neighbors), then it will send message mGOSLEEP to all of its neighbors telling them that it is about to go to sleep, and set a timer $R_i$ for waking up in next round and at last go to sleep. If sensor node receives a mGOSLEEP message, it removes the neighbor sending that message out of its list L. All the sensors have to decide their status in the decision phase. After that, the active sensors perform the sensing task during the sensing phase. +Typically, the algorithm works as follows. At the beginning of each round, there is no active sensor. All sensors are in listening mode, i.e. they wait for the time to make a decision while still doing sensing job. All the sensor nodes collect the information (coordinates, current residual energy, and sensing range) from the one-hop neighbors. Each sensor stores this information into a list L in the increasing order of the angle $\alpha $. Each sensor sets its timer $w_i$ with the assumption that all of its neighbors need it to join the network. When the sensor node $s_j$ joins the network, it broadcasts a mACTIVATE message to inform all of its one hop neighbors about its status change. Its neighbors execute the perimeter coverage model to recalculate their coverage level. If a node finds any neighbor u that is useless in covering its perimeter, i.e., the perimeter that u covers is covered by other active neighbors, it will send mASK2SLEEP message to that sensor u. When the sensor node receives mASK2SLEEP message, it updates its counter $n_i$, contribution $c_i$ to coverage level, and recalculate waiting time $w_i$. It then +check if its $n_i$ is decreased to 0 or not. If $n_i$ of a sensor node is 0 (i.e., it receives mASK2SLEEP message from all of its neighbors), then it will send message mGOSLEEP to all of its neighbors informing them that it is about to go to sleep, and set a timer $R_i$ for waking up in next round and at last go to sleep. If a sensor node receives a mGOSLEEP message, it removes the neighbor sending that message out of its list L. All the sensors have to decide their status in the decision phase. After that, the active sensors perform the sensing task during the sensing phase. %The period the average -\begin{table}[h] - -\begin{flushleft} -\centering -\caption{Main characteristics of some coverage approaches in literature.} -\label{x11} - \begin{tabular}{@{} cl*{13}c @{}} - & & \\ - & & \multicolumn{10}{c}{Characteristics} \\[2ex] - \multicolumn{2}{c}{\footnotesize Coverage Approach} & \mcrot{1}{l}{50}{\footnotesize Distributed} & \mcrot{1}{l}{50}{\footnotesize Centralized} & \mcrot{1}{l}{50}{ \footnotesize Area coverage} & \mcrot{1}{l}{50}{\footnotesize Target coverage} & \mcrot{1}{l}{50}{\footnotesize k-coverage} & \mcrot{1}{l}{50}{\footnotesize Heterogeneous nodes}& \mcrot{1}{l}{50}{\footnotesize Homogeneous nodes} & \mcrot{1}{l}{50}{\footnotesize Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize Non-Disjoint sets} & \mcrot{1}{l}{50}{\footnotesize SET K-COVER } & \mcrot{1}{l}{50}{\footnotesize Work in Rounds or Periods} & \mcrot{1}{l}{50}{\footnotesize Adjustable Radius} \\ - \cmidrule[1pt]{2-14} - - -& \tiny Z. Abrams et al. (2004)~\cite{ref114} & \OK &\OK & \OK & & & &\OK & \OK & & \OK & & &\\ - -& \tiny M. Cardei and D. Du (2005)~\cite{ref115} & & \OK & & \OK & & & \OK & \OK & & \OK & & &\\ - -& \tiny S. Slijepcevic and M. Potkonjak (2001)~\cite{ref116} & & \OK & \OK & & & & \OK & \OK & & \OK & & &\\ - -& \tiny Manjun and A. K. Pujari (2011)~\cite{ref117} & & \OK & & \OK & & & \OK & & \OK & & & &\\ - -& \tiny M. Yang and J. Liu (2014)~\cite{ref118} & & \OK & \OK & & & & \OK & & \OK & & & & \\ - -& \tiny S. Wang et al. (2010)~\cite{ref144} & & \OK & \OK & & & & \OK & & \OK & & \OK & & \\ - -& \tiny C. Lin et al. (2010)~\cite{ref147} & & \OK & \OK & & & & \OK & & \OK & & & & \\ - -& \tiny S. A. R. Zaidi et al. (2009)~\cite{ref148} & & \OK & \OK & & & & \OK & & \OK & & & & \\ - -& \tiny Y. Li et al. (2011)~\cite{ref142} & & \OK & \OK & & & \OK & \OK & \OK & & \OK & & \OK &\\ - -& \tiny H. M. Ammari and S. K. Das (2012)~\cite{ref152} & \OK & \OK & \OK & & \OK & & \OK & & \OK & & \OK & &\\ - -& \tiny L. Liu et al. (2010)~\cite{ref150} & & \OK & & \OK & & \OK & & \OK & & \OK & & &\\ - -& \tiny H. Cheng et al. (2014)~\cite{ref119} & & \OK & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny M. Rebai et al. (2014)~\cite{ref141} & & \OK & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny L. Aslanyan et al. (2013)~\cite{ref151} & & \OK & \OK & & & & \OK & & \OK & \OK & \OK & &\\ - -& \tiny X. Liu et al. (2014)~\cite{ref143} & & \OK & \OK & & & & \OK & & \OK & \OK & \OK & &\\ - -& \tiny F. Castano et al. (2013)~\cite{ref120} & & \OK & & \OK & & & \OK & & \OK & \OK & & &\\ - -& \tiny A. Rossi et al. (2012)~\cite{ref121} & & \OK & & \OK & & \OK & \OK & & \OK & \OK & & \OK &\\ - -& \tiny K. Deschinkel et al. (2012)~\cite{ref122} & & \OK & & \OK & & & \OK & & \OK & \OK & & &\\ - - - -& \tiny A. Gallais et al. (2008)~\cite{ref123} & \OK & & \OK & & & \OK & \OK & & \OK & & \OK & \OK &\\ - -& \tiny D. Tian and N. D. Georganas (2002)~\cite{ref124} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny F. Ye et al. (2003)~\cite{ref125} & \OK & & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny H. Zhang and J. C. Hou (2005)~\cite{ref126} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny W. B. Heinzelman et al. (2002)~\cite{ref109} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny T. Yardibi and E. Karasan (2010)~\cite{ref127} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny S. K. Prasad and A. Dhawan (2007)~\cite{ref128} & \OK & & & \OK & & & \OK & & \OK & & \OK & &\\ - -& \tiny S. Misra et al. (2011)~\cite{ref97} & \OK & & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny P. Berman et al. (2005)~\cite{ref130} & \OK & \OK & \OK & & & & \OK & & \OK & \OK & &\\ - -& \tiny J. Lu and T. Suda (2003)~\cite{ref131} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - - - -& \tiny J. Cho et al. (2007)~\cite{ref145} & \OK & & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny V. T. Quang and T. Miyoshi (2008)~\cite{ref146} & \OK & & \OK & & \OK & & \OK & & \OK & & \OK & &\\ - -%\rot{\rlap{Some Proposed Coverage Protocols in previous literatures}} - -& \tiny D. Dong et al. (2012)~\cite{ref149} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny B. Wang et al. (2012)~\cite{ref134} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny Z. Liu et al. (2012)~\cite{ref135} & \OK & & \OK & & & & \OK & & \OK & & \OK & &\\ - -& \tiny L. Zhang et al. (2013)~\cite{ref136} & \OK & & \OK & & & \OK & \OK & & \OK & & \OK & &\\ - -& \tiny S. He et al. (2012)~\cite{ref137} & \OK & \OK & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny Y. Xu et al. (2001)~\cite{GAF} & \OK & & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny C. Vu et al. (2006)~\cite{DESK} & \OK & & \OK & & \OK & & \OK & & \OK & & \OK & &\\ - -& \tiny X. Deng et al. (2012)~\cite{ref160} & \OK & & \OK & & & & \OK & & \OK & & & &\\ - -& \tiny X. Deng et al. (2005)~\cite{ref133} & \OK & & \OK & & \OK & & \OK & & \OK & & & &\\ - -&\textbf{\textcolor{red}{ \tiny DiLCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & &\textbf{\textcolor{red}{\OK}} & & \\ - -&\textbf{\textcolor{red}{ \tiny MuDiLCO Protocol (2014)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} &\textbf{\textcolor{red}{\OK}} & & \\ - -&\textbf{\textcolor{red}{ \tiny PeCO Protocol (2015)}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & & & \textbf{\textcolor{red}{\OK}} & \textbf{\textcolor{red}{\OK}} & & \textbf{\textcolor{red}{\OK}} & &\textbf{\textcolor{red}{\OK}} & & \\ - - \cmidrule[1pt]{2-14} - \end{tabular} - \end{flushleft} - - - -\end{table} - \section{Conclusion} \label{ch2:sec:05} This chapter describes some coverage problems in the literature, with their assumptions and proposed solutions. -The coverage is considered as an essential requirement for many applications in WSNs because the better the coverage of an area of interest, the better the sensing measurements of the physical phenomenon. Therefore, many extensive researches have been focused on that problem. These researches aim at designing mechanisms that efficiently manage or schedule the sensors after deployment, since sensor nodes have a limited battery life. -Many coverage algorithms for maintaining the coverage and improving the network lifetime in WSNs were proposed. On one hand, the full centralized coverage algorithms provide optimal or near optimal solution with low computation power but they deplete the battery power due to the communication overhead, as well as they are not scalable for large size networks. On the other hand, the distributed coverage algorithms provide a lower quality solution in comparison with centralized approaches and consume more power for computation but they are reliable, scalable, and provide low communication overhead. -%Whatever the case, this would result in a lower lifetime coverage in WSNs. -As shown in table \ref{Table0:ch2}, each of the two coverage approaches has advantages and disadvantages. Therefore, each approach can be used based on the application requirements. We conclude from this chapter that it is desirable to introduce an hybrid approach to take into account the advantages of both centralized and distributed coverage approaches. A such hybrid approach can provide a good quality coverage and prolong the network lifetime. +The coverage is considered as an essential requirement for many applications in WSNs because the better the coverage of an area of interest is, the better the sensing measurements of the physical phenomenon also is. Therefore, many extensive researches have been focused on that problem. These researches aim at designing mechanisms that efficiently manage or schedule the sensors after deployment, since sensor nodes have a limited battery life. +Many coverage algorithms for maintaining the coverage and improving the network lifetime in WSNs were proposed. On the one hand, the full centralized coverage algorithms provide optimal or near optimal solution with low computation power but they deplete the battery power due to the communication overhead, as well as they are not scalable for large size networks. On the other hand, the distributed coverage algorithms provide a lower quality solution in comparison with centralized approaches and consume more power for computation but they are reliable, scalable, and provide low communication overhead. +As shown in table \ref{Table0:ch2}, each of the two coverage approaches has advantages and disadvantages. Therefore, each approach can be used based on the application requirements. We conclude from this chapter that it is desirable to introduce an hybrid approach to take into account the advantages of both centralized and distributed coverage approaches. Such an hybrid approach can provide a good quality coverage and prolong the network lifetime. diff --git a/INTRODUCTION.tex b/INTRODUCTION.tex index 715cab3..f591b02 100644 --- a/INTRODUCTION.tex +++ b/INTRODUCTION.tex @@ -19,7 +19,7 @@ Specifically, the energy-efficient protocols proposed in this dissertation focus \section*{2. Motivation of the Dissertation} \addcontentsline{toc}{section}{2. Motivation of the Dissertation } One of the fundamental challenges in Wireless Sensor Networks (WSNs) is the coverage preservation and the extension of the network lifetime continuously and effectively when monitoring a certain area (or region) of interest. Since sensor nodes have limited battery life; since it is impossible to replace batteries, especially in remote and hostile -environments, it is desirable that a WSN should be deployed with high density because spatial redundancy can then be exploited to increase the lifetime of the network. In such a high-density network, if all sensor nodes were to be activated at the same time, the lifetime would be reduced. To extend the lifetime of the network, the main idea is to take advantage of the overlapping sensing regions of some sensor nodes to save energy by turning off some of them during the sensing phase. Obviously, the deactivation of nodes is only relevant if the coverage of the monitored area is not affected. +environments, it is desirable that a WSN should be deployed with high density because spatial redundancy can then be exploited to increase the lifetime of the network. In such a high-density network, if all sensor nodes were activated at the same time, the lifetime would be reduced. To extend the lifetime of the network, the main idea is to take advantage of the overlapping sensing regions of some sensor nodes to save energy by turning off some of them during the sensing phase. Obviously, the deactivation of nodes is only relevant if the coverage of the monitored area is not affected. Although many works on energy-efficient coverage have been introduced, there is still need for a protocol which can schedule sensor nodes in an efficient way with: a minimum number of active sensors and less communication overhead so as to maintain the coverage and extend the network lifetime as long as possible. The main question is how to reduce the redundancy while maintaining a good coverage with minimum energy consumption? @@ -40,13 +40,13 @@ election and sensor activity scheduling based optimization, where the challenges The main contributions in this dissertation concentrate on designing distributed optimization protocols to extend the lifetime of WSNs. We summarize the main contributions of our research as follows: \begin{enumerate} [i)] -\item We devise a framework to schedule nodes to be activated alternatively such that the network lifetime is prolonged while ensuring that a certain level of coverage is preserved. A key idea in our framework is to exploit a spatial-temporal subdivision. On the one hand, the area of interest is divided into several smaller subregions.On the other hand, the timeline is divided into periods of equal length. In each subregion, the sensor nodes will cooperatively choose a leader which will schedule nodes' activities, and this grouping of sensors is similar to typical cluster architecture. +\item We devise a framework to schedule nodes to be activated alternatively such that the network lifetime is prolonged while ensuring that a certain level of coverage is preserved. A key idea in our framework is to exploit a spatial-temporal subdivision. On the one hand, the area of interest is divided into several smaller subregions. On the other hand, the timeline is divided into periods of equal length. In each subregion, the sensor nodes will cooperatively choose a leader which will schedule nodes' activities, and this grouping of sensors is similar to typical cluster architecture. \item We design a protocol, called the Distributed Lifetime Coverage Optimization (DILCO) protocol, which maintains the coverage and improves the lifetime in WSNs. DILCO protocol is presented in chapter 4. It is an extension of our approach introduced in \cite{ref159}. In \cite{ref159}, the protocol is deployed over only two subregions. In DILCO protocol, the area of interest is first divided into subregions using a divide-and-conquer algorithm and an activity scheduling for sensor nodes is then planned by the elected leader in each subregion. In fact, the nodes in a subregion can be seen as a cluster where each node sends sensing data to the cluster head or the sink node. Furthermore, the activities in a subregion/cluster can continue even if another cluster stops due to too many node failures. DiLCO protocol considers periods, where a period starts with a discovery phase to exchange information between sensors of the same subregion, in order to choose in a suitable manner a sensor node (the leader) to carry out the coverage strategy. In each subregion, the activation of the sensors for the sensing phase of the current period is obtained by solving an integer program. The resulting activation vector is broadcasted by the leader to every node of its subregion. \item %We extend our work that explained in chapter 4 and present a generalized framework that can be applied to provide the cover sets of all rounds in each period. -The MuDiLCO protocol for Multiround Distributed Lifetime Coverage Optimization protocol, presented in chapter 5, is an extension of the approach introduced in chapter 4. In DiLCO protocol, the activity scheduling based optimization is planned for each subregion periodically only for one sensing round. Whilst, we study the possibility of dividing the sensing phase into multiple rounds. In fact, we make a multiround optimization, while it was a single round optimization in our previous contribution. +The MuDiLCO protocol for Multiround Distributed Lifetime Coverage Optimization protocol, presented in chapter 5, is an extension of the approach introduced in chapter 4. In DiLCO protocol, the activity scheduling based optimization is planned for each subregion periodically only for one sensing round. Whilst, we study the possibility of dividing the sensing phase into multiple rounds. In fact, we make a multiround optimization, while it was a single round optimization in our previous contribution. The activation of the sensors is planned for many rounds in advance compared with the previous approach. %\item We devise a framework to schedule nodes to be activated alternatively such that the network lifetime is prolonged while ensuring that a certain level of coverage is preserved. A key idea in our framework is to exploit the spatial-temporal subdivision. On the one hand, the area of interest is divided into several smaller subregions and, on the other hand, the timeline is divided into periods of equal length. In each subregion, the sensor nodes will cooperatively choose a leader which will schedule nodes' activities, and this grouping of sensors is similar to typical cluster architecture. diff --git a/Thesis.toc b/Thesis.toc index 2add095..077327b 100644 --- a/Thesis.toc +++ b/Thesis.toc @@ -43,10 +43,10 @@ \contentsline {chapter}{\numberline {2}Related Works on Coverage Problems}{47}{chapter.2} \contentsline {section}{\numberline {2.1}Introduction}{47}{section.2.1} \contentsline {section}{\numberline {2.2}Centralized Algorithms}{50}{section.2.2} -\contentsline {section}{\numberline {2.3}Distributed Algorithms}{53}{section.2.3} -\contentsline {subsection}{\numberline {2.3.1}Geographical Adaptive Fidelity (GAF)}{54}{subsection.2.3.1} -\contentsline {subsection}{\numberline {2.3.2}Distributed Energy-efficient Scheduling for K-coverage (DESK)}{56}{subsection.2.3.2} -\contentsline {section}{\numberline {2.4}Conclusion}{59}{section.2.4} +\contentsline {section}{\numberline {2.3}Distributed Algorithms}{52}{section.2.3} +\contentsline {subsection}{\numberline {2.3.1}Geographical Adaptive Fidelity (GAF)}{53}{subsection.2.3.1} +\contentsline {subsection}{\numberline {2.3.2}Distributed Energy-efficient Scheduling for K-coverage (DESK)}{55}{subsection.2.3.2} +\contentsline {section}{\numberline {2.4}Conclusion}{58}{section.2.4} \contentsline {chapter}{\numberline {3}Evaluation Tools and Optimization Solvers}{61}{chapter.3} \contentsline {section}{\numberline {3.1}Introduction}{61}{section.3.1} \contentsline {section}{\numberline {3.2}Evaluation Tools}{61}{section.3.2} diff --git a/bib.bib b/bib.bib index cf41848..f6323b1 100644 --- a/bib.bib +++ b/bib.bib @@ -2220,3 +2220,13 @@ ISSN={2153-0025},} organization={ACM} } +@article{ref236, + title={Hilbert mobile beacon for localisation and coverage in sensor networks}, + author={Bahi, Jacques M and Makhoul, Abdallah and Mostefaoui, Ahmed}, + journal={International Journal of Systems Science}, + volume={39}, + number={11}, + pages={1081--1094}, + year={2008}, + publisher={Taylor \& Francis} +} -- 2.39.5