-\noindent The fast developments in the low-cost sensor devices and wireless communications have allowed the emergence the WSNs. WSN includes a large number of small , limited-power sensors that can sense, process and transmit
- data over a wireless communication . They communicate with each other by using multi-hop wireless communications , cooperate together to monitor the area of interest, and the measured data can be reported
- to a monitoring center
-called, sink, for analysis it~\cite{Ammari01, Sudip03}. There are several applications used the WSN including health, home, environmental, military,and industrial applications~\cite{Akyildiz02}.
-The coverage problem is one of the fundamental challenges in WSNs~\cite{Nayak04} that consists in monitoring efficiently and continuously the area of interest. The limited energy of sensors represents the main challenge in the WSNs design~\cite{Ammari01}, where it is difficult to replace and/or
- recharge their batteries because the the area of interest nature (such as hostile environments) and the cost. So, it is necessary that a WSN deployed with high density because spatial redundancy can then be exploited to increase the lifetime of the network . However, turn on all the sensor nodes, which monitor the same region at the same time leads to decrease the lifetime of the network. To extend the lifetime of the network, the main idea is to take advantage of the overlapping sensing regions of some sensor nodes to save energy by turning off some of them during the sensing phase~\cite{Misra05}. WSNs require energy-efficient solutions to improve the network lifetime that is constrained by the limited power of each sensor node ~\cite{Akyildiz02}.
-In this paper, we concentrate on the area
-coverage problem, with the objective of maximizing the network
-lifetime by using an adaptive scheduling. The area of interest is
-divided into subregions and an activity scheduling for sensor nodes is
-planned for each subregion.
- In fact, the nodes in a subregion can be seen as a cluster where
- each node sends sensing data to the cluster head or the sink node.
- Furthermore, the activities in a subregion/cluster can continue even
- if another cluster stops due to too many node failures.
-Our scheduling scheme considers rounds, where a round starts with a
-discovery phase to exchange information between sensors of the
-subregion, in order to choose in a suitable manner a sensor node to
-carry out a coverage strategy. This coverage strategy involves the
-solving of an integer program, which provides the activation of the
-sensors for the sensing phase of the current round.
-
-The remainder of the paper is organized as follows. The next section
+%\indent The fast developments in the low-cost sensor devices and
+%wireless communications have allowed the emergence the WSNs. WSN
+%includes a large number of small, limited-power sensors that can
+%sense, process and transmit data over a wireless communication. They
+%communicate with each other by using multi-hop wireless
+%communications, cooperate together to monitor the area of interest,
+%and the measured data can be reported to a monitoring center called
+%sink for analysis it~\cite{Sudip03}. There are several applications
+%used the WSN including health, home, environmental, military, and
+%industrial applications~\cite{Akyildiz02}. The coverage problem is one
+%of the fundamental challenges in WSNs~\cite{Nayak04} that consists in
+%monitoring efficiently and continuously the area of
+%interest. Thelimited energy of sensors represents the main challenge
+%in the WSNs design~\cite{Sudip03}, where it is difficult to replace
+%and/or recharge their batteries because the the area of interest
+%nature (such as hostile environments) and the cost. So, it is
+%necessary that a WSN deployed with high density because spatial
+%redundancy can then be exploited to increase the lifetime of the
+%network. However, turn on all the sensor nodes, which monitor the same
+%region at the same time leads to decrease the lifetime of the network.
+
+Recent years have witnessed significant advances in wireless
+communications and embedded micro-sensing MEMS technologies which have
+led to the emergence of Wireless Sensor Networks (WSNs) as one of the
+most promising technologies \cite{Akyildiz02}. In fact, they present
+huge potential in several domains ranging from health care
+applications to military applications. A sensor network is composed of
+a large number of tiny sensing devices deployed in a region of
+interest. Each device has processing and wireless communication
+capabilities, which enable it to sense its environment, to compute, to
+store information and to deliver report messages to a base station
+\cite{Sudip03}. One of the main design issues in WSNs is to prolong
+the network lifetime, while achieving acceptable quality of service
+for applications. Indeed, sensors nodes have limited resources in
+terms of memory, energy and computational power.
+
+Since sensor nodes have limited battery life and since it is impossible to
+replace batteries, especially in remote and hostile environments, it
+is desirable that a WSN should be deployed with high density because
+spatial redundancy can then be exploited to increase the lifetime of
+the network. In such a high density network, if all sensor nodes were
+to be activated at the same time, the lifetime would be reduced. To
+extend the lifetime of the network, the main idea is to take advantage
+of the overlapping sensing regions of some sensor nodes to save energy
+by turning off some of them during the sensing phase~\cite{Misra05}.
+Obviously, the deactivation of nodes is only relevant if the coverage
+of the monitored area is not affected. In this paper, we concentrate
+on the area coverage problem \cite{Nayak04}, with the objective of
+maximizing the network lifetime by using an adaptive scheduling. The
+area of interest is divided into subregions and an activity scheduling
+for sensor nodes is planned for each subregion. In fact, the nodes in
+a subregion can be seen as a cluster where each node sends sensing
+data to the cluster head or the sink node. Furthermore, the
+activities in a subregion/cluster can continue even if another cluster
+stops due to too many node failures. Our scheduling scheme considers
+rounds, where a round starts with a discovery phase to exchange
+information between sensors of the subregion, in order to choose in a
+suitable manner a sensor node to carry out a coverage strategy. This
+coverage strategy involves the solving of an integer program, which
+provides the activation of the sensors for the sensing phase of the
+current round.
+
+The remainder of the paper is organized as follows. The next section