From: Jean-François Couchot Date: Fri, 22 Mar 2013 13:54:40 +0000 (+0100) Subject: methode yu lin esquissée X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/ancetre.git/commitdiff_plain/816fb65d854cd25faf1502a4dacea06b10e27ad3?ds=inline;hp=-c methode yu lin esquissée --- 816fb65d854cd25faf1502a4dacea06b10e27ad3 diff --combined closedgenomes.tex index ed2ad82,bfe1c1b..5ee33c2 --- a/closedgenomes.tex +++ b/closedgenomes.tex @@@ -2,7 -2,7 +2,7 @@@ The approach is further based on the ab genome from each others. To achieve this, we combine XXX metrics which are detailed in this part. - \subsection{Core SNP based metric} + \subsection{Core SNP based Metric} Due to the definition of the core genome, for each element $\dot{x}$ in this set, there is a gene $x \in \dot{x}$ in each genome. Let us consider a class @@@ -33,7 -33,7 +33,7 @@@ without considering the number of SNP i % plus il y a de diff, plus le nombre est élevé - \subsection{Symmetric Difference based metric} + \subsection{Symmetric Difference based Metric} The third metric consider the symmetric difference $\Delta$ between the two sets $G_1$ and $G_2$ of genes recalled hereafter $$ @@@ -50,9 -50,23 +50,30 @@@ one This metric is equal to the Hamming distance between the two corresponding vectors of Boolean values. + % plus il y a de diff, plus le nombre est élevé + + -\subsection{} + + % 4/ Using EPFL method +\subsection{Adjacency based metric} +23424133 - % 4/ Using EPFL method - % 5/ On size of the biggest syntheny bloc - % 6/ On average size of syntheny blocs - % 7/ On number of syntheny blocs. ++ ++ ++ ++ ++ ++ + \subsection{Shared Synteny based Metric} + Given two genomes abstracted as sequences of classes, it is classical + to computes all the maximum shared synteny chains. + + % Attention ici, moins il y a de diff, plus le nombre est élevé + There are then three issues with such a set of shared synteny chains: + \begin{itemize} + \item let $m_{Y}$ be the metric, which returns the + length of the largest chains; + \item let $m_{\overline{Y}}$ be the metric, which returns the + average length of synteny chains; + \item finally, let $m_{|Y|}$ be the metric, which returns the + number of synteny chains. + \end{itemize}