
BLAST: classes and xml files for block models and
implementations

Stéphane Domas
Laboratoire d’Informatique de l’Université de Franche-Comté,

BP 527,
90016 Belfort CEDEX, France

June 29, 2016

1 Models XML description

2 Models class hierarchy

bla bla ...

2.1 parameters classes

There are four classes of parameters for a block:

• user,

• generic,

• port,

• wishbone.

Four attributes are common to all:

• owner: a pointer to the block instance (reference/functional) that “owns” this pa-
rameter,

• name: the name of the parameter (NB: cannot be changed by the user of BLAST),

• type: the type of the value,

• value: the default value of the parameter, given as a QString but stored as a
QVariant.

• wishbone.

type value (int) must be set with one of those in ParamType enum (cf. BlockParameter.h):

enum ParamType { Undefined = -1, Expression = 1, Character,

String, Bit, BitVector, Boolean,

Integer, Natural, Positive, Real, Time};

Except the two first, these values correspond to predefined types in VHDL. Expression
correspond to an arithmetic expression and must be used only for port and wishbone
parameters. Thus, its syntax will be presented in the associated sections (2.1.3 and ??).

Whatever the case, parameters will be used during VHDL generation but at different
phases, depending on the class.

2.1.1 user parameters

User parameters have a type equals to String. A default value must be given at con-
struction but a userValue can be defined via setters.

A user parameter is only used when generating the VHDL code of the architecture
section of a block (cf. section 3). Each time the generator encounters an escape sequence:
@val{user parameter name}, it replaces it with userValue if defined, or with the default
value.

CAUTION: No validity check are done by BLAST on default and user value strings.
Thus, they can be anything and can lead to incorrect VHDL.

2.1.2 generic parameters

Generic parameters have a type equals to any predefined VHDL type (i.e. all defined
above except Undefined and Expression). A default value must be given at construc-
tion but a userValue can be defined via setters.

A generic parameter is used during the generation of:

• the entity section,

• the component section when the owner block is used within another block,

• the generic map of when instanciating owner block is used within another block,

• the architecture section.

In the two first cases, it leads to lines like
d width : integer := 16;, using the name, type and default value.
In the third case, it leads to lines like
d width => 10,, using the name and userValue, or default value if not defined.
d width => d width,, using only the name. This case occurs when the owner is

instanciated within a block that has a generic parameter with the same name.
In the last case, each time the generator encounters an escape sequence: @val{generic parameter name},

it replaces it with userValue if defined, or with the default value.

2

IMPORTANT: a block that defines wishbone parameters will be generated with 2
generic parameters with predefined names: wb data width and wb addr width. They
correspond to the width of the address and data buses of the wishbone and are used
during the generation of the controller of the block (cf. 2.1.4).

2.1.3 port parameters

A port parameter can be used to obtain a value associated to an interface of the block.
Indeed, it is possible to create several instances of the same interface, when its multiplic-
ity given in the reference model is greater than 1. For example, it is used for block that
may have a variable number of inputs/outputs, like a multiplexer. Instead fo creating a
bunch of multiplexers with 2, 3, 4, . . . data inputs, it is possible to generate one for any
amount. In BLAST, this amount is given by the number of instances of the data input
the user has created. It implies that the selector input has a variable range and thus
needs a variable number of bits to be expressed. If N is the number of instances of the
data input, then the selector size is log2(N). A port parameter is used to express such a
value.

A port parameters have a supplementary attribute ifaceName that must correspond
to an existing interface of the block. type is equal to Expression and value contains this
expression, using variables with a predefined name $if nb and $if width that will be
respectively replace during VHDL generation by the number of instances of ifaceName,
and its width.

A port parameter is used during the generation of:

• the entity section,

• the component section when the owner block is used within another block,

• the architecture section.

In every case, each time the generator encounters an escape sequence: @val{port parameter name},
it replaces it with the computed value of the parameter using the expression and the in-
terface name.

2.1.4 wishbone parameters

A wishbone parameter corresponds to a register that can be read/write via the wishbone
bus. Nevertheless, the GUI allows the user to disable the wishbone access and replace it
by a fixed value or a port that is assign to the register.

Since a register has a width, type gives its type. Valid types are:

• boolean if the register is an std logic,

• natural if the register has a fixed width and is a std logic vector,

• expression if the register has a variable width and is a std logic vector,

The width is given in a supplementary attribute width. Note that:

3

• if the type is boolean, width should be equal to 1 but in fact is not used.

• if the type is natural and width is equal to 1, it leads to std logic vector(0

downto 0), which is sometimes usefull for memory accesses.

• if the type is an expression, width must contains an expression using only +,-,*, numbers
and generic parameter references (i.e. parameter name prepend with a).Nocheckisdonethus, themodelmustbecorrectsothatvalidV HDLwillbeproduced.

In the second case, the expression may use predefined names wb data width and
wb addr width.

Whatever the case, during VHDL generation, the final width will be compared to the
wishbone data bus width. If the bus width is lesser than the register width, then several
wishbone accesses are needed to read/write the register. For example, if wishbone width
is 16 and a register has a width of 20, we need to define two addresses, one to access to
bits 0 to 15, and one for bits 16 to 19. The total number of needed addresses gives the
minimal width of the address bus (i.e. log2(nb addr)).

The value is a initialization value. If not provided, it is 0 by default.

Three other attributes are declared:

• wbAccess: indicates if the register is written or read by the wishbone bus. Thus, if
it is written, the register is an input of the block and if it is read, the block provides
its value.

• wbValue: it may be a natural, a boolean, or the word data. In the two first cases,
the given value is affected to the register as soon as the register is accessed in
writing. In the third case, the register is affected with the value that is provided
on the wishbone data bus.

• wbDuration : indicates if the affectation is permanent or just a trigger. In the sec-
ond case, the value is set for just one clock cycle and then reset to the initialization
value given by the value attribute.

A wishbone parameter is used during the generation of:

• the controller of the block (NB: this generation is done at the block level),

• the entity section, because register values are in fact read/write by the block via
input/output ports,

• the component section when the owner block is used within another block.

3 Implementations XML description

4 Implementations class hierarchy

4

