From a6cad0acff5edb59be08de7a97cbf8b1d78a837a Mon Sep 17 00:00:00 2001 From: couturie Date: Mon, 4 Mar 2019 21:46:19 +0100 Subject: [PATCH 1/1] new --- chapter2.tex | 147 ++++++++++++++++++++++++++++++++++- figures/chap2fig1.png | Bin 0 -> 28830 bytes figures/chap2fig1.svg | 175 ++++++++++++++++++++++++++++++++++++++++++ references.tex | 14 +++- 4 files changed, 331 insertions(+), 5 deletions(-) create mode 100644 figures/chap2fig1.png create mode 100644 figures/chap2fig1.svg diff --git a/chapter2.tex b/chapter2.tex index c99fe46..8ea057f 100644 --- a/chapter2.tex +++ b/chapter2.tex @@ -107,4 +107,149 @@ implication index for binary data~\cite{Lermana} or \cite{Lallich}, on the other hand, this notion is not extended to other types of variables, to extraction and representation according to a rule graph or a hierarchy of meta-rules; structures aiming at access to the -meaning of a whole not reduced to the sum of its parts \footnote{ICI }, i.e. operating as a complex non-linear system. For example, it is well known, through usage, that the meaning of a sentence does not completely depend on the meaning of each of the words in it (see the previous chapter, point 4). +meaning of a whole not reduced to the sum of its +parts~\cite{Seve}\footnote{This is what the philosopher L. Sève + emphasizes :"... in the non-additive, non-linear passage of the + parts to the whole, there are properties that are in no way + precontained in the parts and which cannot therefore be explained by + them" }, i.e. operating as a complex non-linear system. +For example, it is well known, through usage, that the meaning of a +sentence does not completely depend on the meaning of each of the +words in it (see the previous chapter, point 4). + +Let us return to what we believe is fertile in the approach we are +developing. +It would seem that, in the literature, the notion of implication index +is also not extended to the search for subjects and categories of +subjects responsible for associations. +Nor that this responsibility is quantified and thus leads to a +reciprocal structuring of all subjects, conditioned by their +relationships to variables. +We propose these extensions here after recalling the founding +paradigm. + + +\section{Implication intensity in the binary case} + +\subsection{Fundamental and founding situation} + +A set of objects or subjects E is crossed with variables +(characters, criteria, successes,...) which are interrogated as +follows: "to what extent can we consider that instantiating variable\footnote{Throughout the book, the word "variable" refers to both an isolated variable in premise (example: "to be blonde") or a conjunction of isolated variables (example: "to be blonde and to be under 30 years old and to live in Paris")} $a$ +implies instantiating variable $b$? +In other words, do the subjects tend to be $b$ if we know that they are +$a$?". +In natural, human or life sciences situations, where theorems (if $a$ +then $b$) in the deductive sense of the term cannot be established +because of the exceptions that taint them, it is important for the +researcher and the practitioner to "mine into his data" in order to +identify sufficiently reliable rules (kinds of "partial theorems", +inductions) to be able to conjecture\footnote{"The exception confirms the rule", as the popular saying goes, in the sense that there would be no exceptions if there were no rule} a possible causal relationship, +a genesis, to describe, structure a population and make the assumption +of a certain stability for descriptive and, if possible, predictive +purposes. +But this excavation requires the development of methods to guide it +and to free it from trial and error and empiricism. + + +\subsection{Mathematization} + +To do this, following the example of the I.C. Lerman similarity +measurement method \cite{Lerman,Lermanb}, following the classic +approach in non-parametric tests (e. g. Fischer, Wilcoxon, etc.), we +define~\cite{Grasb,Grasf} the confirmatory quality measure of the +implicative relationship $a \Rightarrow b$ from the implausibility of +the occurrence in the data of the number of cases that invalidate it, +i.e. for which $a$ is verified without $b$ being verified. This +amounts to comparing the difference between the quota and the +theoretical if only chance occurred\footnote{"...[in agreement with + Jung] if the frequency of coincidences does not significantly + exceed the probability that they can be calculated by attributing + them solely by chance to the exclusion of hidden causal + relationships, we certainly have no reason to suppose the existence + of such relationships.", H. Atlan~\cite{Atlana}}. +But when analyzing data, it is this gap that we take into account and +not the statement of a rejection or null hypothesis eligibility. +This measure is relative to the number of data verifying $a$ and not +$b$ respectively, the circumstance in which the involvement is +precisely put in default. +It quantifies the expert's "astonishment" at the unlikely small number +of counter-examples in view of the supposed independence between the +variables and the numbers involved. + +Let us be clear. A finite set $V$ of $v$ variables is given: $a$, $b$, +$c$,... +In the classical paradigmatic situation and initially retained, it is +about the performance (success-failure) to items of a questionnaire. +To a finite set $E$ of $n$ subjects $x$, functions of the type : $x +\rightarrow a(x)$ where $a(x) = 1$ (or $a(x) = true$) if $x$ satisfies +or has the character $a$ and $0$ (or $a(x) = false$) otherwise are +associated by abuse of writing. +In artificial intelligence, we will say that $x$ is an example or an +instance for $a$ if $a(x) = 1$ and a counter-example if not. + + +The $a \Rightarrow b$ rule is logically true if for any $x$ in the +sample, $b(x)$ is null only if $a(x)$ is also null; in other words if +set $A$ of the $x$ for which $a(x)=1$ is contained in set $B$ of the +$x$ for which $b(x)=1$. +However, this strict inclusion is only exceptionally observed in the +pragmatically encountered experiments. +In the case of a knowledge questionnaire, we could indeed observe a +few rare students passing an item $a$ and not passing item $b$, +without contesting the tendency to pass item $b$ when we have passed +item $a$. +With regard to the cardinals of $E$ (of size $n$), but also of $A$ (or +$n_a$) and $B$ (or $n_b$), it is therefore the "weight" of the +counter-examples (or) that must be taken into account in order to +statistically accept whether or not to keep the quasi-implication or +quasi-rule $a \Rightarrow b$. Thus, it is from the dialectic of +example-counter-examples that the rule appears as the overcoming of +contradiction. + +\subsection{Formalization} + +To formalize this quasi-rule, we consider any two parts $X$ and $Y$ of +$E$, chosen randomly and independently (absence of a priori link +between these two parts) and of the same respective cardinals as $A$ +and $B$. Let $\overline{Y}$ and $\overline{B}$ be the respective complementary of $Y$ and $B$ in $E$ of the same cardinal $n_{\overline{b}}= n-n_b$. + +We will then say: +Definition 1: $a \Rightarrow b$ is acceptable at confidence level +$1-\alpha$ if and only if +$$Pr[Card(X\cap \overline{Y})\leq card(A\cap \overline{B})]\leq \alpha$$ + +\begin{figure}[htbp] + \centering +\includegraphics[scale=0.34]{chap2fig1.png} + \caption{The dark grey parts correspond to the counter-examples of the + implication $a \Rightarrow b$} +\label{chap2fig1} +\end{figure} + +It is established \cite{Lermanb} that, for a certain drawing process, +the random variable $Card(X\cap \overline{Y})$ follows the Poisson law +of parameter $\frac{n_a n_{\overline{b}}}{n}$. +We achieve this same result by proceeding differently in the following +way: + +Note $X$ (resp. $Y$) the random subset of binary transactions where +$a$ (resp. $b$) would appear, independently, with the frequency +$\frac{n_a}{n}$ (resp. $\frac{n_b}{n}$). +To specify how the transactions specified in variables $a$ and $b$, +respectively $A$ and $B$, are extracted, for example, the following +semantically permissible assumptions are made regarding the +observation of the event: $[a=1~ and~ b=0]$. $(A\cap +\overline{B})$\footnote{We then note $\overline{v}$ the variable + negation of $v$ (or $not~ v$) and $\overline{P}$ the complementary + part of the part P of E.} is the subset of transactions, +counter-examples of implication $a \Rightarrow b$: + +Assumptions: +\begin{itemize} +\item h1: the waiting times of an event $[a~ and~ not~ b]$ are independent + random variables; +\item h2: the law of the number of events occurring in the time + interval $[t,~ t+T[$ depends only on T; +\item h3: two such events cannot occur simultaneously +\end{itemize} diff --git a/figures/chap2fig1.png b/figures/chap2fig1.png new file mode 100644 index 0000000000000000000000000000000000000000..690c0fd2aeb8635be61882477b5cdc195cebfff0 GIT binary patch literal 28830 zcmXt91yEFPv}akmyK@2Q?rvC8KtwvEq`SkVJ5{7Rm2L@HLh0`AlKj&pyz6`On7PBk z%--+r_nmWoan8nQX)0r5P+%Y+AYiLN6?6~~KpVhChlT?D$5A4m9{7diA*Z5?2K)q~ zSw#bXqq{;4JP;6Y`u<&@FYGv!z(2`774<#exY&65Sh!mw`1ts6**QCSSX#JRbGf+N zW}Qklqa^xH`55V8-o1gu;r^3%mGJF zb*2r$zbBw?6x44(cQE^Wlm*md+~aphi8bii-=`YQP(GtH3(`N)vJl1MO;ifW6x51V z$hhQ_PJE3V6GT0*SvsQ-ks>&d@hjTDL2W)v$URfv30|I!W)RADuQ+tsuA^o_@A{AmJ}4 z_B(Ec<11v$+i%0=3+H#V2#!AbBqou3%0w$z)?!Rxe;T41%q2zLGXlZ}EEp{y8G;VC z+JJ7@3J`rkKqn7Q5Lvc{-$FYp8H++(p($*fo;v;ETLFGEr=FK2z@M~Rj#uA9!Ixri;k)6w^O(7OkggFeZweFH^_mpW!e0j# zJYWHb5W==Yitr0i_>a)m;3SX+lZc*bEIFG&;AZlaoj)n>Fw#*+6oc}JssEj+(V&bC zWa=BoQoA6)`PecxQ;eFS6;imHi7qdb&7(uK@ji`GgSgCaQQr3EB~-XY2pg)gl^ zp5VF_M#wx2)2>YyS^#Bq4~c`#r_{f?bSWY5B~6bR@MI&xQ2a!NxDsADn`!&wExaFo zh6h55ked{s;Gt**-63i3@Qo*SAqFSSaIq7`BK;2e{C*|EiXlt+v^~Y(ba5cFMy}w4 zI4iWe?-O*N`O?Ml&Bpz9${q=MPwfd;>V2*9ZaA~7+k>EVYngwpFB);|oh?;rxiw8-jWWdaZxz24nH$LHs5dZK2&dxhIqVlqm>27-|EItsoX@V<4&O$m8gbNY;WmA_VO=mC% zY%P)!czjyx_o1MH#oR{Ze-BM9FR4OcI_}nCvMIF7v@tJ}A(OVvDs`!liY*oiur|?d}p)Ec?@+k_=`0vSq6AsNcQHVS7de=t$J5{ZknIN&!Dl_DNY{EH5C*c8EbI}qb*Z4@U= zS+~Hx$*x$=Vcg)e^6N>*?*e1BOuPb4^8zn|O`ffuOgmqtdE%Ag)&)ow)fhUQ^0gh@ z|F`gq#~4ozzuv=iaLB^rkJ-pR9%qFV7v^rkt&c?nt3*Qi+*`g0JKuEr{wp=K`wZDU z1RpaT@Z>q}wFWXiUVp+H`@!N`eYR}(hMAH1JzMG>AvPD}?xU;K=W6mAMutRR(u)^^ zB*wIFm3E3VgD5o0se18_)6(=u%oq{WcbwSB4_QO@LA3WcEkar3j$-q@qg0>bukzO{ z{o|G8HuCT}e0X~@xFIF#DU9=;qg{%3hB0!lrY;(@&4rtlweC4%SvKTS#Z=L5wmWDa z(ePP_P;fRVDTLgF#XIam_Rp|4jl1}B_T%*uCHp;(l^CBM5q17tP+(i**YJ0q1v2_u zNjPJ4S8MUixrOy3}^?!|M0>B~1MOWW5W^Ahw6#29&5$J$=E zn`NZ+So`wNN%M%zM)oO?YBKfS)WTooOCpNLuH4;c&d88Lw>KMSc~QQJ#HAjdF1rhJ zR6J0FxWsT?%1g+m7yN~1(L*kMtU@H+P2dF1xm&FA&-I8l4Lc?y(xjwh${Tv`$UF z4zk?Pi^K|^*(t%t`Ho#n9+phr(-qlQtoUK_MvvUn+)TWy5Tv z*;M3hhArpwc{%~Xru)_2WjVRNCo7T-;+y21N;^24m0ZybNE?Stfy!L;oODO+KfF{) zv2h@UF|xE0!trHMzD*WN)y~2S2HhmknT6UF)HD+2Sentqhd{ zLpY4};M4eUm7j9;*CS@BrE{f3u?l?$l}I|<n3p=*ne?VB8_83cC>iJ zH@>-2lz$+kq0n?z0%4}$dG&Zlsp+ChVCyH$D4xn=3?%Tx02nvmJssTWoMw`;zOxQ9 zL#25QAz#@}zV0)NaHa8BoN4A+F8?6@`(jO-~Jk3kgna0Y|HmqPJZ&Cq_m%HN6q2%whgy6X`%rm zNy$F@BRrTtbaDXOo4;PE_<(FRS$0koP8GVIu?VetL}Hv-rm$2$3(Ak!=1UGK_A6Z# zvC2vEG~=`R5jEus!BeGnwGGv-tT7U)ZXZm0XC$I&At?!aA$U5bRj^j=m*~asw`NQ= zj{2*Huk&HyS1IdMa*Aca;ewC6$Zg%gOD{?Bn|NyS(9eUPC;VIAO!A#gyCTfbY>(oN zUo%`t8cmEG4MwXwyqV`Q1U*-0%)i)+y)KudGO{xro7%t%?ZR#6XkszkgIL+gD!)Q6 zsuEP5G=0X!AD>8ZRjMR{MQy>bl~59S6J1!Vq;Y>3+@~1S=7@gHf3oedfi7VcwN%sM z>qiq6h;3NE3dl54&7u~u5xt@HWe>$d`Kc(?Zf}(#i_c(%XS`6OJQVxBLQ&6%ibudv z)JF}opIq+H#b*Z2@}J=QGwCWJ1yJ-SqxisA(%eYFKi1 zm_MXN0`D7mO_qnSjhCW((M8Q+4&#wOWW&AJknvAhEj=loBaS4k!Az3k(jVB@^u(^l z49oZ%7exWuSaFcb2rrFNsNOBy&kRutfku(wH$+3M+qAi%&{b0L167E~riQ|vFi9+U z4(-)jE{Cmaad1ti%$7ZMAE8Ogj)5iIE4OKnWu%x6`605mEpFj?vgsGdmR{wp7({DA zSINOPRQUTx!T;L2e?fhhT5m4lM*@xq&JurOG6#^GDA7lrcx-pQ+{qX9S_%_(@Zn13qPjR_UE zG|Qie9-PswN4AW?jK}fISk<>HAXdl~sXMpxMZS+|3)BF;D0bc9P$?exYy5 z9kmGG_B8x@$}hg5oF%#^Kh3+RQ+lN|pE)tqB)5rMdTBx)dCA%{jxRILlUpN*DuK5^ zD6&_jRFf0_6ig&Xp!4un_1vcs8^7I;>ORN>b0vHy>4`8ULf}CMyQDXNZYD|We}TrweyGUd764DqX=|2Q*#Jrjv2 z=!fziLri=gJ$e?UysrxmU%DvfJrSvcyNbgY>a|cs|prxBdKwF9FLa!6Pgp9nu611qT=xL-qJWKkK;eTtB zq|-;(LSOK!BD&$^^?AUavTA`T$h7njWLsDS5@z5xWQH(2_*faR=nmoKJiXB2xA4Q1 zllRC-K>@uVTmt^13k%zY(!h_R{nwlnT3o!MqM1;$L!S=D7}C*iQ%Xn_qee$1UWg0n zJgHK1B*-#2Un@H6pzJM)Hps^zkNh>_=V*|_*YIX=c=?F=bRsv$V-hWv>E1RvjqavU zMz0+fm25+FQbJ%rke14bU zLC=x<%*D_VAyT@g4Ks7@svFVhl|vFn$7jLR6Q_Xp7AO*_=HQ4L7=H?FF=QYLNm1k# zJ-t1Hx~_{DS7xkv6*_Bp=>6m3T;l84zU~MsYac$z_%nZ$ZXL-Y<8j~5gt=!Gv&CRq zhC%2No?^#09x{OdY3-0RtazGF#qzOC@reNs1qF{{+)3OjML$cHxW z$k^1eay+I9Q;NzrdA65*M8_3TL?lDZpY0cS<+(bS`7Dh|DC#SZCK<`z! z8Rc8pPm=b&&^H{JKv_Ka`987PZ%TSY&@=975_UoqdhRL6_=>sAQ7(+6Qun?N7LGbw zshlzuZ*8+PW;j-SQECd$p+4swAY~_1X>7v@u-aHmaV`y#uGh0M*G!KtP5UE_-yLaa zm6k&8`z&UT>?(HthJBwWD(5z0StjCy_s_U8L?sH9Y0EBCX*^f*aJ607q}`iITs$j2 z9!t#YPxvr#N9XUT*0XJIu`cMlCi^TE$;mr-xm0dW6l}!_(ev;&w zbP@x3cUJPwcPOr|7vtkXghIvCQeL-A+Zndd~gA@|H|fb^r$#@Q+K?vM9QshD)F(_y4V^~u`Av39I)cfw~1 z4JG?!T$Xmb%-_-Y3}pN^SVc++@2?Ifu_y$hga1CHWM{9OV){$acpooxmuh6`H`x<^ z*Qy1NcPY{pESJGIa; zQbq|+(p0DiE`d@9eeF7xO+k{^rr>J}!uW@^ZG79WC|j=mNwniJ%((+QgP$@4>_hXn3}YuXNWGoo%8QY6zG&nd(h*iFW{Gzs%jUwPn}UN2M%zJ)MY@PpCj5XR)}BeEF6Hdr2bt%w%WhtZ!Weot#* zz3^EHVDW_+OpOS}rcj=g!n=w@_ZT(>aru^TqLQO~Xgn4FEWCb&XQ-*7ve`%YdS`@x z-0I=#(DP`n>KCEHr=cO$z0s`xWtXne6hp! zudMeX?ltEOVpB()jU}SN5l_;hDYaLGX@-_PnmBhPRyTU!?67cbf*8z{<`8+iwq-5R zZo%>~Bx!N!t@7vi5wWcI*cb8!v?3qhWQVQbabrB0z``BZWaV7$L*_N@V-RNx;XnNS1VanJDzr-pkk+ZhEfC)zMQ_%miYmVr*kfU=v|g}jzot~oB1`mK z$wWy0@}LWrsVAyaO^sc3904x?s`qK)yo;zsIU{Qj)) znLXzOxZqMOrS|flD0Rll?39+i|Df+(FzUUZ-#LudMS*{ksZicRGU`;v1)qu`n`_2a zJ3f}-)r8-`!35-u4M-*TWDI5b^|R_ ztTx_jOq(LTx;a_?+V!-{U1`*k=urLRRdqHuly80{gWuqXJJZYGvybHB-W*W7=}!X} zS|V*t8n_bP@4J43*;97Qog3F~W>ohe-~etuu++G!Wu+&)OU7PNb`DpnaUxA&!*WL{ zIU+o+GCtT-@I+WoP))AKhpX7empoQ~Tfa|sL|skIL+a_g*Kw&a=BT>8TAoS14pwS6 zlFl1uJ)FktFvsD4dy37YGTmqZjZju*dwq)GXx5h-s=&?Q_3{oB#L-;B^c*H)Nv&kRIzD=+buX}#MxXTxTaVbN>OhUR8Op=?*^7aBoASvAG>A3bc9+t%gga7&Cq9$ z&dAeepaC} z*az_q5cH^nsQCBH6!JOJ9%mo=9G$h|QdR@rpz*Gq2vx&-Y7T_Md$M!SLhQ@yC( z6!*uImIj+q3QdXs6uzI-6N6E4tj4lMC2m(dii?XylGFTf8NgF>BGeUiCUKv|7Beuc zybntYWRgw%a5AbWSBoE%FSjO*QIEsRf5$6Ooe^tyG#C2mpywqzI2cTn(Rux1g%X~8 zXRwNbh+(0eB0K;^PUGWtf^Z|DW~~Exd60g)H|KtC02hEZa?_1LZPn5;y) z&(}4RUXqxD!|5v1goP<^A_e=Y(+0CJRYpLX*RHLf8po~FM1s!(}adDvshLAt%sWN zP;_N3=O_{gNGRXP%oFOs41xC$4SlTcHRDf$C5y3OBzptEj+J8p)45|DZA<@xt%nGvyf6+|U3bYgwJ$Gyb-cRJq0u?0+0P62fvEoBR zL+QMhDC@zGoNyc~$qOEn!KdSFquOZdRxpvCjkJy15ljJ;1hj1_K9aW0MArdArW z2~g~Q0v86p!o>kP2!y~n#U1{d&cvC7;g1^NbKkhqwf(eIN}%{0YsJ%Vg z+0RF=eku?3TlkwV&_&bA3qNy*iamGnALOh#Ij|YWC~8}zF+UuF>ZLHx+**fsSc+B? z$pgwh3YoREsS7+TwWIO`RQ`}7<3VTx^6MGSw~gVEj0IG}A13I2-fdy-1{Q@+A2Lcy ze;l}7|Cpz1Y-}6~ZKOvflT$K{*nZ934)qR0$AUY z7tbGDb40RnM3C=DM2J{9x;W$a_4MN+MV94LNE{fF$xmeg?ihBu+WzU&CwWax9FsOr z5FHa!L}Q}>8ynlXf9D;*fQN=y*x8E!1`I&!&~O$}-eihSyx@Sw2hpv3;*@R2jc>=t zj(?A8y5=IW9bTUyC&e_$#F_Ex$PIEcrS^AA5B1 zOD`-6_=MDE!S^NJcbid0POp3Z`+K{dR8d|&aJt_0@;g30{;yGsv-MJ=oxeHkfufL& zR80h*NrBm&wxW41+j~=vQ8r0osV%Z(->sGET%U3C8x8r1BhIuR@#L=$E6N61a^K5C^I&E`MA_#o(ZLPV(<>X%e&c{U}UZDM-PNl zE6U5KD-j|!pYVUx=riK}=r5*g*eIcvv=E_k)qy8#!(H&T9TXi?;sjLFHO))2GBbx* z%d&gOZL_-@?WPA{irxnQKMOE8X!jq|q}AiiN#N6e{T)Ct3jFUE>0KbI?rAf<^y%y9 zDl1&^4Wwtp_>PA^-~ApA%Z$WL@j>1vOS4|9ZC(ug{QSd@*GIRX?wcM@+mp(2{V~j$ zr^dz83gelTeoPf7%6nq2*XW|5| zA2NRf&-QN%GJwKzcz8&XH7{0DQquAFX1U|(Vwl5(4XmRv{m0AX1#5Eb?H`8%H(nl( znR4yG+f|?9;y(9Xwd0HJBx#(*&H$g9m6eqfAe`;AWVdb~MIVnF3~J3m(Z*ZLX=IC1 zZ6Fs!$`p!y{a+#Bg-J>_*FHWwR@7c_%j7hVT=?^EoZQ#=)Hw3atwjiJUPr%Of-fn# zItRkqLSpXytx<_G@-p{w;aCLO4A}Y7P|4e<<&` z{?p{~GVet_iAGYO_{*|dG(3pgfwPf`i?MzBzXi)A)_n(hnxy`>Mn+kC?mr|nM9q@f z!fbQ>l)w`LC+Z69VtV?73p5rL#MHK!?$W%EaPLWc`owiGDLr=K$1n`Znw&_c)utQY z0fiw4U@cQ9*c4VxlIR+;va)MqIpUZ8R|jMq>O=kc92^ z1BjbpjBU=go6aANJ=ytVSV(GfZhj~IK|o5%yqWgcd^MJ=R30U4WSF}vJ2VvWWQe^+ zon;?0IX8DK$7fANRyM?YGlDd9B=jYmX#Tc#M#SO1s`{vU*|{A!7)mVzgAC;4%*-YG z9LN2!oF70=3R)!xiA^4!tZ6qhH2ms~b_#L`6NFz5jQlhi)IYhOhy+X1UBKj{JN+Ad zmBC}cnF_a6xBpJ09&Q+y8U|`nW%IBQhkh-Ly}C8j>u9dP&akQaC<&605Ys2JG5P%W zu>r_v9Q1OQp59Po%)}Y5RbJ17iCLw;E@}sDV}s0jBlXt9GJJ)kiYo(&9<+tLu1F_X z%S-WGGN7&S{wXES(3=rho(xIenXIT;`y{zGW4jnD>)`#&o7Z)Yi+sC*lx{QH%5{PF z?!mY1>miJFDRVp%A3z+?a76Xk{$Z4n&dlkUCaklo!L$$Ehv}IO?-b3^g-KzZ;u~0sa4`6p zM1R4%oyg)9A-d@6!SQihfV3_x)L8;_nClKu&|{=#fd#ueI|p#`=rxB9Mq6xz-+TM} z9>2+L^_}7%u<9d26BCon-pzBtGT1ByK-O85Y5W+W{KV}wH5B!={}Dx^#Nd2PV8MBo z_$(a$2lj%uu(s@-MPyM*Ii+ni6OK;!Pdnu8}WMeu-E}%>n1GCFFzwRtW%rB3C5)Q1mI1! zsK>zASo2bDxD_C8{;g+dV^fMVQk)PgOu|p@n&Y>Z(YjjK5l@{rGdmmMgo5P?5FpBS z?=JzBs6!!ZeUX7S0e7fd;^Rt;p;^UDsDYruPmeYm3b6PR9djnn^j3F-R!S_MHxMa9Am&YbNUS{DEn86%}v z#oMQ>K}UZJ7l#h7d1Q%~152owKf048=!B2aXO^yRc#2)Otof@^in!*_-mt*76U7q) zPJf`9%zsKDv9i-!p25&G4|I3udsC*_v_zsv=-X-9Qfk*Wyn7M39SHF1GM}?GgrJmN zRB;{rg(Xp=_M#4=1=Fb&(5UE!_5kGB|9#P~w;d@cD+NbwkN;3KQM`KA(R=t`*syVN zjr}j#zdoAB)o*cL&Hwjeq0P(TEHyRNv1Xpq2f3_e#XXLGdm$=cF5840!-^{CYLd+d zUV0ZO1w6;IYwjh$PLKy9n;nYwhu}iF)aP>M)aU%>>Tgg5NI!N-)CSQbDzO^wi{;O& zFz57P3$K_raiVI!d$-TU!Evmuqcc_1*4Fk5zq!=T-^Rwq@Ah;x&cnmQM?7b&cI`u@ z%(Q^%$G={`6Da%BIE_jX*+XzEo4=DQf$eV`-ULeJ^`6~|uQ>bYXDzGeN@UENeWbR^ zu<{cbr+$Tnnr&G@oMKBd)pziI!zaPaaR|f=-UricT%%Exe#m5nHv*Yu8g%{E$m{!m z0AtS!eyH#P`UBE=!cVBf(OmeifwNp%h zs}qn(9e{K1bh6s+<5n*D`b5>+Tj-y~piJ%c`SjZVBf$4n%^POD1-qf}WLDjU_=g97 zVc7H`mcy69%_v&D-umxLx{&aEkSX%1y!*Fj7-K$lJ}YV<2Orx#cPdwPG))fTpk&9z z5PLI$It#F6KLPm|LX*U7FfAa-&i=g;z%6S#J3GOu&K5x7d7Q0vioSjO)__vjnX1iW ze@sd~5^FIzC&y%RDd1$JFNW~P%kyJXmdnpY6H_2en9zrKhY8h*@RK! zDC<+Z)|hr4Oqbz`dmkU57bBe5U*O3SSfg}c-eHL#r&BCQ%e--b^CKF~y7N3d>CIn{ z@!O8=0493l5{XRs)_jebw0UnNcCRGOYj;CKL+jw+=SZobhhwx~_lTYVd9MHX@@#Z@ zae<-p=FRQ=%#2l~@elW7KzcnWE7eD*77nRr=(=3KO6?447fS|0X7H36j-my zP>>^yuqj)UnY;6fz`4a}Uf^Utdb$A<3{pyJb`UM^0YXp4ovA126c)|~qdp={&~l6| z(Nl<8j6NTb^@1f(pBF@n4eD6^sf@huf?y;DtU8Ll;>NRiIR$Yeh z&d@0-CQyWjP-g+pWIlm0saAXg1|eCP22l!*|2OrgfhiVt77{FA-@R~GYO9`NtK7|^ znEVD7^68bv*3;#9%TgM6tfjeGh?9ZAavdH5#spGcjN_B-D^AWT8(=Sx2L}fQiHV69 z>rTVZTDNhE2uIx(%4i*2V1O3VcZw<`k0-C~-9!sGg{g?c6OSsD1|;#Rc#wkrU|oI! ziVrS>b7Bu2d3uE%1<-yd-ZdBpXvHaQ@STOalarI7zrVj?SMcB9Sl!?CKr!3f-F4Db zRsFUK0Qc7~?C%nJM$z8Kj*O`PW01*$EyG5l5{5g7JNwIm_<9zB>kR)<9?hT0!~%US zSI8)g{s2Z<3C^N+^(l_Bpr3kthff_0+R1kNO|Hb3WPQ+9{TFZ>djU!_H9a-O28fC- z!Kqz2uCK#cd3jx|8{r;8jth9~7m28DfOw`na<)VeFQ&dlI#`!B6+E-dgI0seN=hc1 z9Nyt^zHi5NBy>XQz*<13O1v}7F91t%o!=^#|LmHCC{8zC0s(Wo7Em+Wtfi%u48+(^ zF5oD+D8}aDyY7DfR{nM9=^qyx`#=KhZQ1iTY>^zz)1Qyd+v8?Nc51Nf%1Vw|;icbq zf1jgAVIXh!R?1+e114XT7_tqGoD5kbx;Pm?pxn?>6!eiF`t z)>e_S^78ULfKA<=t$$QwoGUhju(DQ22@Cs(%gD-hPXJx5b_WjOK?B}6jS%XK~cOQ&7>W#r4U}QX7P=2WaZ^}Jo5<7!ub$pk&Wj2Z8|Ms|I1Nf zBYP-N1>5uU&C3A-=j?piytA`YJG2#{s;8%?_?64V`|)q^{!)`e)UPf7+ETlx=UddB zf{%6utOf`}pye#6a)vrFu{Y%eMWS%!V2;p!JKVeQzwk|%I6XF*H=GyAJxA*tai2BY5>5b?6#&m2jTyzUzAUGMTXF zT5J(UTnqwg&0yg$yIl9C>jB=63|Bq9v^oc2CKCAw-V~~Hdvj?X90L-O4Olc+$Uc1|hzjdU>kecoGR`s!r4W&ho~cm2i%KbKGT z0A+}z5-9o$!k>zuqx1f>i@Sg)%^$K0`;>~aBeJM*{0g7Cmb3zO3@K7p9u=#$2eF7C z#n{}~*|~ahZj1mxFw5=V3GxVSK4+$6&a!tmshOFESwOi4Y>%9y`5IcsCdre{`eCl# zU3XA+xZsg7*9TXy-U1#2l9QEu6eXp&d2g+PJA8r#%PH_63Z>cG(TF%n9kp?os~xLl zxs58k%Bbar_fJqmL&Gp9e=$0si?xrv+m8U>?du!hi8}@KDS5H0>tQM+=^IG#vap^~ z1veDO7Vc1sB&PdUB=1Ew@?IrFvE*JrI>Khv&iwwG}LRb-KO!C%v80*|uq8gYUxSkZy0MIj_&N?z&1|UP;AVXzjb@vKcYwqN^sHLZuUJ`IzXduwx&ZbSpDi`9@5LJ0 zj)>%U(m0_SBi90yj>SxGk_4#85(vRv(hwY9V94ROvlrvoIta_JS(1~6IFIb7cQn{e z8tvP&FvSi6_~PJDyLUri&MRBH1+F~kB!AILnsx~EGu_z4PL z5tvA>1tC~l#|U*tbE@-iL^G;npqM{0xIN>Ti)<)7g;M-%?h4D-g5$)+t1!Mo$ox{G z4A`Kn0G#Upbvt6!whIMFL}H+@RoBPR-EVyf(JccT&r$;XN+6=fa zp%*q;=+EYsFqv^JI0+lnZHxuRkSNlV8u#_f7wfk`*t`O~34mwn8N62zKb$HVritp^ zrfJ%yS8Gvw-9J0>kQ2CP+&n)NduA`+6D+NIoP9>9YF zz(HXhL<(|T>ku9K`nE9w2m&$K!^1-@4o8dAvd!@l@5nN?oeG)9Z6S~O$V0nGauX|p z5i9*K`Y;5iCtrt$#>YUZejrNQ#i(#T0`8LKMZ?(G*cw>N&~T}<$?`-25J1|Os|hk+ z3t8&G=DjFyH_UD0#h(7H@h8%Gsc~?j$tYcz{GQseKX_Mr65jga?TrvQl2>BlN&pK% zu>2igx3l%@*Dn(wVA%m))WelI?!*MVSUT~ZKUweUng-maleyIrMWAV8eXR6m)`1^> zv8!q^H}=nhLGu413Qn2=6OpNwe=9FP*m4yK{1=+q!gTRKwKzj&;p9xH@Y(=4 z3t4-op%~Z5XK=v3zVh>5Z?(|3WMuRolKKhtP^rj#4_QzhmH&h=qE4}Cj0Q8jeyuTm z0FcBPZlF7~G7FGBK7Rh&jJ|ctQ~>MRfGcxpX{j+bHrDg|3HleHuVyK{MDFX*Vagpx z!WnyEOH_q#sPVo4cI$CE zqRY(1@?`S|H*=KAXo(zp(M`=zRLHumi8N-xOf0QlP==tuV4G)!DEAi zyeMXq&3?piz?;F}9cGhL1gba_lQrOs`1niY){cb!Ygt*&Cld7j{&1zNR#gkavAUsr z(}ThbwS`ri6s@b70|hCk!?Z^H-`ggi#ODSF1{Tgd#XA3K57Qc92tjZP-TA#O!epZ# zSgQ_bU*4R=#UVhAfjw!a%`Yu2?WN~4nZE~^sI1r-k>^#Q#qR`#5N{9@$?|(96`4+V z_#{1Mr5hYDnw9QEOFz|6d`e5x+r53H2C#Xtiq;7iF|SKW3z>!DE`$ki##>q09ium4 zM}Pi^9mC$$m}HlL+mkGJ@z)TrDQuG$sUR_z284PF--YaBmV^b zSr0gqw0GG4iUREvS^lNX z4}iS{1qG=pw?V2*JC~AaR?&%~M&akYBDGE18+3+b!!`lb>7J~de6R3b5tS@&%C${R zbN^Y__AOrdwdPnH!2FzelXoRG4>r7#j3*H1e9584!1dql0pA}8F`ynuS9R|D0`m(A ztHhgiY?UA2JPLl3i8qRI;J>6)NaEHz0v@%6+jj^ZrY^eNhHu}_qKBf>{1?evy8uvq zb&-v>Hn2aM-pndD(vbAixx9S7tOb9(!XU7Z-lFD7{gxu;(zP7%r4ey~bkzEC@4s_X z_^}62BSo|oapEOIeG9s=Mc8!TzV(_C(0C0<_Lx5rMd7@)<&~B3F}t509>BL$>{PX= z=>U(&5OhdG{`#&llAh4W#AKB#qGhqc_Kl$-hK`v-e`W)I$jLkatS@Atc;Y~12j4pH znJe~JL>-82{7Z7c6;M@CsYvv?AKZfi3%Q9<{rvlQYwK;b%3+u;^>Pp?7aE9kFfMsZ zMUzC()j$cLA#rBuzYf!hJDmIHU16QWyH)L8&_@TL9$JcQ`5!XeN#n+ zYHB79FV@JqySrBbd8qgH?cz_#&9zRYpA34eseh3ITP*u=fFX&G23DbkqQ+cbx&Nge z;I=n4@lOGsxqiJBI^6l#AQ)*2=5;JC6HTJj_+vs=3r{@LX^J2r2!>A+ixCM1rrlzW z+CBleV~F+~aH76(IS*o2)LujM1=Q)pbt_hUp8!xmcM$-jbs})^1EfX5DtGc(`sx6- z#9ZnEhCbd^lMyvi$q1}%ooddq5>WTnP>DH;(bQPv^kC}AQ%Odj)nd<53 zDQCg=>om0m(j<2Iq}oR;=V!Fpgj_sGDS+@@;jg_>RIwUG7os_dbr3ry28Qq7>-nl? zMT?$8&j+A$dJBx0Dzj+k)O0;B9eBP);Ye%^IqAiYS8}%?F?5WZ-2t(}{n5sJ-yt_! za`3QdFO(dK0g#e(7xC@ew<*9=ioc%p{SD~C9L=(ST6}c>a#1MM(jD&2+7kqtc)9DB z)-fP|$G6G*+S}WkypbmI=JD^-;p>ll&rhFWYcOo`umS3E)Iy^;JLy+Q&Fk_2QUAth z2@v(IT0-;HwgF}q;9KBjh>So-rthmHpaeC6FMgx7& z-mW<`abgexoOc;qHQ&+&w2LbZ8c@vH>ziHPy+Uq|p$U#OXL%M!6EolLeS;(7?uY_3 z<7pwm^hISrP11~h|GH(_1Xl}4EerZbsKvvIaEqt$=lk|jJFk!T!)8~r-w8WK6M~?x zU)KN)$M09Z5`(|Z+jxOzlQ@Ti#Zv!!0^N)RqNHp}Qe@ACu`JP7)F(DoeLzdgzIV+Rmc?Mgg^ zNdT`uMPcFQcBx;#u4-9R_4E4?8EvQ#Z1VkYynH6^NN?^aePIk{#*Q9A`K%C?D^oqr z3g%l}Dpn!Hhp7@ZhTsCA$`ZkVY*BE7)4+hpGK$P+XJ=n*bz_iWz4?R|NU7gqHAs-_ zyM+!o*+>JUqpMYRnWhE?ep;WhlcXM^U!HHf=w^u zQM+FQn&NyzN=z7E;5UFfrC^K&fcu&&9Gy56N11yTdOj+=PS&6%{@d>_oFTK+&!zoD zDCk$Lg0qe#Esz68e2!s)y8k~5z{ht3#Ig?nnUViJ0lnBCz|>R1#HILxcm*qZI@S!t z;zFTJ_KrN$8?LN4n%!qf3_X-#tf;AZ4NQ3ie;u}-&xF^eW@kG(pmw-!h785M<)pTy z&jK2*liUA&0Ge$$Z{O;%TCE)e$3~Y9JV<1*BUAfEj&amvxK|3PdpI8mgh{w~NUmNdq-w_~k=ObGvaiyt zOA0~?C`>Mds9uX(+7J3}fS(LtNxhL#kEq8UnR`-Pol8Y@H;u{s*@VDo0N{NdT<(8= zESWtuX0)S0YfME@6HDJi{(*}QdDt2TiTu7${j<~$0|tuknRwW2I+b)@87$hnc0~;_dd@#-*fln#=eS@ zFp>n2`{BUMufS}|kk3P=elU>$nxgdW*qHu3Mp@%bZsQ5(kr!~GY% z#%z{6I_ZyYFEMUG+BrYPtLe2c-0QIm-ItkdQWsm{Nwz8?N%{Ir;qr=f%rxLw0hWKH zi+dFy#isP;?Q0E3cR}@2RKRB$ddLG-YYj-$7|I{6rYzj&;s{_EPdNb(1%z^~oj(}} zP~Er!{)gB5z=&{m!Vuu2EnS(<=~qOD@Eo(~ls4*deEPt-Wx09re+1mu9mlCJe*GIF zk_@?zOsRhw%7OAe%Xz}QHyu4!GwU6wNX+Ol9jS~0ar)fU8!4J`Uq31Ytm@gNnBqt5 zJ!)E70Dp3gSPc+C?)F-GKQe{H$T3b z@98tI|0O9%q4k)!l<&5ph7oXR@!o&;VwXGdfx#YbPZ`1s5oCdiN#ZNyE9*eLvrl8w zn4)<4+N?p{wI94-S)#5?fZ;&ddErf4(==|5OVpk298Jae^lKQ;(MIUZ z!X1po8a&YmGaf|+AAKy+kpk&u%_eNzC{z_eOvi`?(6Vj{tOVb#)9=mHqLywvHL+-v z+8DV03lxfaV6DAK(q;`VuC*Npn_&E9mn2+zz@gmRbNTbOm+yfFLPv{h$U@mHToa7X zc{;mdD<5yg_p5BB!Q-1BN6mNUVK@hx^bvO#cvN(aX{=vR8&$CkrakHW_xRRFgZ1rH z(Z*6zZUyL)-T~kv3FHPA38}Q|!vWU#-ZD`P4n&6kl1H??$K}f=`nau(XF^3SC75YV z!ZvWfW8Mye2N=dUwzf5XoY7Ka{LG2q>+2L^tp_o4Dh9CH&f zLF&N3K*>}b8`k`Qb&Eo@*xZ<5NfPs-OJ9k(WL8s4mB5FdzxW5z2yTTPPPl>b^fH*J z7lLl~E9q%bVx&+TCy;^oaL|7GVtrKaYaLW2pnUgw^Eoj5aUpyb5%=fwE{0C8)M~(b z_~_T&9CkjbF`PczP4;&xy9_-|8J-iUtrBj=Ji_ctGQ!w%ygG_lLt&tevDX&#)^u2H zwLzWFsqx;|e|jpVdA{U-7-{`%h9D7vv&Vb%0hI1UKQ57#(C`OoyIevqK&vALxTzL^ zP=Kkcc8=R{?aa@2B@|P1EgCvgXN{|*+O3*wu-sUO@7g29Y}gt+gNL8Myz;{8(}n1o zEom6;l^VmgTu!MFW;<57F;xU2j-y9|_UKF1u95em=eFPAE!Y-jN^}JX=J%isqe_@C zt?9vtJ7QS$HG(zp^H?wXO0*O6dXRtH_Jr|ScOLN?xv`SfX?jsup zvSy0yIdeI=UhIV^512s+a{@=$Eipn-s(>7Gt%&(62njC5aw^A?(j(_|+?^YK^LyFG zI~7Fo8`-eoJP?p^uZ)boBA?nW$Fojd!KcrLLLw!+4>pS9xGezeNR(ojzyg{RQSg!h zIxAMoqWHw+<`yR45s4w zKw`O6zVSC*y4Jy9=siMwFuJ5qyVqPFvYps?mlwL6`h6cn%=&>tk6G$wf{tuMxE%aeH4?a543MMm-8u~9U*G{|2+#*8Sc6MaEF zCn25gXxjJUkS&#+K4bGV-bz*F9#>VJm&#K4C$wVg6>0z)z@|m7oGQC)imO0o?S0Sa zJ&XgnH+=<}@87!((t3{pTlOxNtIBL=V&(-o;QS;X?+$3Dra=GVSK_qp-KC@CHZjGX z{VL8%$27)D(KJ%o&5YHLNq>4Y)u+LV8RfA*=cxziM&eJw3*hZZ*8^il=*{ql zLtsqgRJP$#_+K1YFEqQt#eSr9VWxDv$sMB>1%My$w=^&wqjH%hejGM=p5(yxc_d50 z*EhqTNUebE(3{ns$btV%tbQFjbrEFQtf$N#DKYQe;q!AD!gtM&V9d)~R;3LqbSv=e zaRFVV)cA99rY-@DE2(-FLmOo_WP0f8yHzFZ1g6_kM#h4rN8qgUX7Nxq$P&;17x>h| zc%vgD+&jN3^vwI7)>Gz)xX`@@cn_a>Peec9T#25^|MtxL?}bDHkQ2hwcNS@X?DlhH zDGmMiDw$d;`;+UxaYc6k>$m|tMc}QOKb!OF;I`2@=!^MXmSFDGHDD*92IR*p;ZNLlE1SZYON^8^rZ3j=%)5@Gi(e%kZxqUeiyrrph@BvySukJz zz?<`gY#E>p2LQb%;Ow{FaE{0*J0pLYe0KS;+?4!&m3U^@@EEtOo6kZeO(#_fQ+{Oq z3!VDmXNc?@#jbKEUrT?QBVK09CJab?d@*T?x%kmLz#au2uk{XrEV;H_>}LGD$V397 z&w=_W`fp5*Qp}CHL^0_Npn^6wH^+eo=4JX8sLjC9$xzP`u65f~(XBT51iXXkVQB<#mTKGLie3Y>$VT+JM zTw$XbL)3DmD->{?4#|08c*;9dhtG|$b}#kGoet4 zg%im`Svfh|QtqPRC1M}?UP)yH=uek5^I=n|#}9n4UGp3H;tDO}L7osqpG#_b6e}*ysW=|OBZ6d`E_-7U`aAb%VUfh z1wSk)NuDVI%sMAIGI^H3>3GcCjDsgghTH^oNhYF^)cUiJWhTmxc(?csgao#Mk_RSA zP-_AQLk2jwNbDROt7D8p6kp2Ai#~md0(Dy*sE5B)RDfZw(eCa77x{0K{leNkDp;h1 z_ww0W%AXz@EtCqa7|m=df=WYwsX2&b)-Ybd<00K3UGM^cJ?jSxV`G}P1Jo{Re*q%6 z2o?%mYo~O^iOES)5Ov!;21ehPJWm1wrt z@fh@<$@r3#zkFxWe9$=3MCR39mxBEQX-Q`KCtoQMn?_UShL^U%k-&<#()*_loAmqf ztSf`hw?MEUN%C}9!1ro1b7!H&eK=17FtU&sc`9mZYQwlwQak{0(ISg`?R_XqvY&ID zt&0Ry#u{X~<-;+4oPo9_Wrep5o3`+O{j;&T(<;erGwQkq7PbD+z*wy?13o9E zmkx18tHw&jZYW>K1j0&?E5nveL6ZsIzRy+MK`4H}>>v;p5>f!?oL9iCkb6hqiFUV? zB?W4>w*PbPU|Lr4xj#@V=tW?8mi_U;H^_J@^HHR_IHH_o(8H){Nw-)9ClH+TD%7bS8g^_;eBhvv?i`LYqi9CXTcXw48PBEHW zTeBZ$EAQn%3XfM0M68YGko`QyGVB3HE7bqa?;CY$9wgI)jB#$IPzMEwzhT-XIA==- zO9Ate<-NgshiIc|$0BzSMj{RY_Fg>Y3cxk^UDxE_a~tDu3bi2bUR!|UVd1p3K4Zvi zIx}^lpzN{EQ_g88%M1+tnp{-+)b%ilm^1=_<4d=ra_Qe`bg z-6K!!txVU8MsussnnUFN5nXnp$oiUPbZ3X%ZhrF+V?7Vazwc8dPJ|+dq|C^V<^bmZ zLD25yq<%TFrmn6RVS9#o(R$Ut#pSkV;3;Qvy!s^Xy*Hy3v7u`N)k`zqAlclW!#8|d zj`@>JTx`SDDon<1k7Y-RObQ0qiws1;6)40qN(9Ew1 z#I5b+#2<|-d1!P%eA@SWT}awOrZxE&XilbuJ&@?oImZrbnMp8zSq-0)x9jROy*X-z z2T+aoZAqUWE{`fu8215ORYgl{9QpBqPP~0b0ZT|o=*P#$rv)HB0kFeAXD~Ea50Sr+ zzVmo9ny>!q)hpWU8Cc$I3f2Axf339>chal`tl^UXt2A*WnjPnLc2#>N`m&DAc(n=C@tuw+q=#UMkCB_b|aoa$^2N zv|?a3DECCN4zM|UnT11n zu2lZOZ6P6lP1DV)#<#T)S0!c@>v9lhiFo=;kQioqxBNKTf7#heA&hXOSP7Yoq**o@&|79 z)%JMF#ryPhQpfWH(Ehaoc-jN#0E6d1dM&MPn42@G0#y%p=dBySf{a2Fa*|oA%+dNe zS8Pj*(T>ndzfQTK=!drc^*|YUelaBFu(5+gRY_mYNxDo8XLAWZnb1Bwe{Zp7jRSlfVKV&DAzx#zPDmFN=c)E`P7gW z0&8f8?8tpoa`0%i_c0_O6NV=(+r$6f(b_7!0=Y@YR>NbzVFQ_z;-1P)r)dCnJO2i! zrBW-XnFB&}LqeoZk<^EkD&d~W4D1{5@v&qA z(Nc@)Dr3ec&rX|N53KNxKvD2P*oo>f@d?uIs6Jd&2|=i@AxFIUy`$VKh8+c+VHQo? z%QAfb6`+o?xV9f7*0K2eT862WRO+#ObKSBeG@sr()z|zGm7!emTaooBGRDoNAM=gB zY(B`NTIqr&!Fn!_*FiII&91H<3H<|r4L$N0`E1a(t*hWpO-;Fh@F~AVU-ULEPdk$R zGjG%*7lfw^WcJT!S9nLkpN z5tIukg{vm)5SEXOM{oplGG{%}-s@A%9}?a1l2dtqI#zebfYZ@Qdvt}DWZ`j~UKqFI zv2hZEMh`iW7;Ix3D#pn1o$FS zGBVm&cuDZ{Ujx4u9V68BNGoVpZebK>JC(B72GnVya5Qyx|DuVK6xVYJ6jAI;{3FWA zUsZJ5?-o}35s+4E*o zT?RxcLRI|O6`bbt6^d6KL>yc0bUrhsSh0kV$ z283VwtTT<_fUqO=5u!>k2@|KxIu>#ZmFyBZw*NIMhi#CVoO_IJcXZ*FU;UzH`7>g> zMLDVg;k1ZPd1t9rp3YU_P2Rn8b2BK$Qs`bf#IT~V-60l-l)z)9*mfnnVX_ncMrX0^ z?F+f~O&EbYok&r3-!jVXV+|!VZPW|07|lSU0Fen*_HeaKpqaY?o4D-&{dJ=wCD?d? z*3} zw9;^ZNj|2>^8?TI_3$}Ai-EY|7TEsd2w0T2%Z1tbAOKD zp5)&3Np~a~9lYf*;OoG`Lx)dKP0@+CEVZZlp8g?|Xf~ zr{#`35N$XGLhmu4+m3)c9l~bQv`BdqU`F|A(Q$*K6Yjb!ptW%3KeBtlaJQjeD}CO1 z*%|H1h3uAm=VN)O){Jq9p?$5BaQ{S~TD8%*dsnNtn@efTk3RMZb@wsY{V9p11KG{l+ zno98KVSozvKbxQ^4pm>F>zhMG+&=BKZ70_F*LzG>5nDwNE7TTKSpH~xblufJvD&s( zxgrbkA)}tQX{n(^8Mw$XU|hCVy{=uWd2$9a4f&G(FLiVjKvN5t%fja74?rtIDjsL| zKer8Q0nxLEMNll0U`IMCrZt_htGcuCw5#DbpTTIxE5Ar`S@L%ILGn6TEKkO(W-5*klAJEx2 z%z{jrh4|)(B_^}g0b6XJK0y&R0@+4YI7nj3ci8%uVQ=){;W+b&n#H?FXIUml@3{9i zaykR4YR||ry=d82YiU#Ys?*3Wo)o<=JV%G@G#&)JQGM9vMCkz-i7!o`TP6%jGxE`m zSus(zj6TO|quHk1u<#}PxJJ*g(zE6DGY)~I!R(G9N~g}=*vZr7uJ)Ghv?wRm{IUhb zGwz1(xR=cn!TVH}Z|POu=pu>bvQEd=cL9;%i1tKQv>@T4fHZTZs7r5bsbvx#uRG*f z_1s&glSX)Q+ry8i`8T|7GVhMeCn-yy2FOjfgH%pi8i-!rtRpsKr;j{8CrxnMNlsql zLCN5Z7bm-2d%EYKnx4EkrCIp^xp{UWdAR((o8^aY_Vly1_9z=ALz1JTq|-Y!JWl0~ zh!ZoF$J8wdnFMoF^^ z$y>1>zq9U9gp`pYJ?PesbPnFYps?0oC60MFG2dG&<;+=<=V3&afurBZ;Mt))`FWb< zdc|aZQwTCtylhI7P~Dzjv<|w1w>ShMKlUdz7010ki6-g#S#6+Z7MGSLX_CoM@_#T4 zwR4pcpzGK5o-mSrU{23%uI#s2{2R5@cgXD#={`&}GRh_)J$f8??wKCCf8w4_`rdJ{ z*ov)hJ#R4FiY?xQD7(g6{ujMP%ZVK0wzJaCTjcB=&*z&0(oZ}EBjs4G*T{>$b}me3 z!*WYfVhxI`c%o8N)7^ZCi-&?NrVqSITe{#51$THjKhlfIqued_OcQm3pV>XXq9R&j zbKUPxOY9RHRZ3UVjnQo<(th!q$Oo-o&r&ODtzQR0XhLh#spiV^vc+Eh3jPE$pd%g8 z@3TU(O@B{nKz6}Y_y(~bABgxajoQExAhxht+ONGeuGoj!-Ebs6DijQ0s0la8^23KllVXF zdX)SqqxR)bo-9>vllkQJ{7$n89Ir?jM|Wtn|9A+C*#bcA9Ao~g7wie%s8bW?~M6-tJb}$@ngb60P^58)4A~vYh zOXWCDicP{(H8dFCeGhDL43QD4NE=t%sn~upD=k{1uKIiaxcCz&dc`YE8a8@SB2nVkVRiiYz0tqKJvsvjtc6Tdi`K7mq)JoU4WpPX zN9C9x(j#L&25zuc5w+*S7AWN!q;)T(AZD7W-Bue0qQrMaqu8GESE~3&^xL>X(2ZK= zA@q@w${_p_PlCet)ix`Y2J=73VI0G+KgL`4HL_VNB?YnXv{a_8s*Z?Z6cPR|FEirW z`q9r{Do+ZwqN|)_-T2x34E$=g0_3T}L@rag{X4ge^%RC~@qa8MpWiz~X(_cw=*1kN z5sz<&Zm^BQ#i)#xjiS=+I^KP;W@4|n_B&B3{4BbMT-sfM@KKW!D3IFjiDuDu?)!w1 zfubgRoYmAz`$G1ftlz6j_N+6?JfhbSF?Rl(WIY&uvGQH%;fh^QnJ%;*qmek5x*5$5 z<(4|%>zoHwT+eJ{9%p70E!|*=y8qn+ItxAIhbx-N@%_h*PeX5Dv6SDF#KmTbKB$Kx zAw9Wx{EqN*kBsiGoa{1qaS29Q%NN>tmAl(J`WidU<>@cys1rzx`7J9ud?wpj) zU}F1VPsSteI)B{@}lS0OBI78 zbYe7C55A{6P7YJgLq|klP%l=T#iYz%Us9Uz7VS24!W-jRnLSY4;w9taoZ2xizw?KtFU^ z;AYKY3_PfTDPG;SI8P~<3%(T^t{bvH`;J!$;f60t#Lonv|32S`J1_4u#+yTkwOpS6 z@QizPd+T6J7C`zF@l}yBt)SE=mzdNcTjloL*?fYUrSKm-Oi%`!1_FoB#F1-RYSnFL zAdo0%A{$Z8Pm#VT`jfOgTT(b4kSZFnKz7?j1-4&tu#Lsquguz((nAv57iydIpSZ{kf%$w`tWX{m7YoO^$g`q zOfy7iI=c9B2FN9r5Ia6p-{miw#lQPY50HmcaRSlzwhp&h&$vqUuG!s|&v4u|#Sn09 zigvOe!{|GWJm}5}0~by!PbUOApjx+=*jrl||2jQen18GXkSphgy;-k~cM%a(y>QVP z+0`pl9@5=l%};85f!>d68)<@OM7QFL2gSNBT?}D>WOpY4%lTQ6C45xWJE6gL#os6mp|iVoDIWc^rRK| z<{Pn$a--(Bq=?ofgX5*Mte$ov&wuEFy#Fr%Wjv&{zIhOm(^LD>I{fg;6*+&9cTSe$ zdWlDFdG=yV{&rrlK$LnvnE(Mfl;chj@(JX@*T}P%&Y!=RnGEHm^gf+V$^W*SU5PRB zYix$jYk)*GzgC(!$=kSF2Ro6(^*kmuH~O}7r6p^41} zs?eFk_9Y>?bq>XETbRUqr*((7daN_m6HUt<%p-a6$oC{m5m5H~0v8%-+{cq}-f3t_u{8!%hEZD7BV_1?d^pgGw3nrm}3nUw&$?yTpx+%FGrqqrvO6AJhHM+qGfcyD2jDFDYQEXll*LqO0-TE zParp!#xv#)QlG;*9f#Z~;(0k_{q~wlbc@f}$In>P-7O&;?t))lx$9B7pt41ZGoelv z?-734b;kE*p=ERT^Ix;4(q5xFg_PQwG)xL zC5?@tT764)Z5kjI6KFHB&^&N*>v6uHrlzcIh+mU4bI!mSYM2N^kJD6>oYl={f<LS|uF1d|y{w&@92+t&J{;Dz_nbg63kgp;m5Fh%ACN%Y)U`5@rGx8uM ziiq8Kyk9TQo8)`e9~CwDTbhJ+!t#3TThw0}6&AI9O&X)RiJ2Uzw~^%46v&4w8NCey zfgP^7X?^!maqb?jgCop;`JbY0ww7>Jo9E5Dw;Nt7(h2y6nI z*L_$M!-G<)XeOEHQFIV(cD@eFNO8wQ%^%=`nI^3<)oN$QPl}>aQi{y>Cj1V<3J~bt za>kfyxXcY^X(!Fl4At$g5`pG7D~e1;+P*s!olglFBD5(uWD+@HY%l#zR_4J)nJUzU z8gSD;bRZn>u^n+@EWARw#HJ;o2bHV;9Mm;yh4v*-g8nX{3As~7o!;x6XjQ= zWzPR|){mTTLujBZ!c=lc_qXOBsYzV7Jl6`A!JVR38eXq0?)MOSsIjMa{|(z@d_V6= z_No%eZ%<`9k02@5VHrx-7Ca4EfoRbn3K->RixS3v8vNYbad{Wg&s|-6mEOs)r%dK~ z(8*q~Iyl*p(x8spf86X33iuGtZ{a3#O@GH4Vri;sfjXa!EJa?aEj3_3NVRh;#(eoQ zsp=b*RrGqK9$tx=C`!h}C5bP2iB7_f`xb^mSw}5)bNKN2ND!e0f<>1O&V&lX>-U?s z7?@T{!1_W~kVHW~ACBju$`fx+3d>*@@S=ZAelEnsRvoZ!)(Vz=uk zK3$_+In5h|B@j1)(co9?U=LmLJR?e#b$TW<&Wn?e^;Vpi*W2b3rk3nTAK{>NG-o>P zqJ-SwDXvp|{PDedpK#am;AB<&24!TGp~wcA0zSzbvwY#+=pVc*(>|?z2bphJbv2CG z1493BrBtJCAwN(68B}%+Qe)m%Lh|?f4eOFnJw-D`#i~$z=}uUktKJHzh>9q|_WFa? zR#E<6o
eI3NAy0 z{0Y={OASF3(<&>%=?m7glTj)9v7yRJ==-SI!557TMe#pg?OT`*u4DCTbaiz3sO@YfE6lUS9`o#H1faQWhryGBx?SI{kZH-S<8OV+aw5UN@rQfJjW#Bf8G_Or56TG=yX(mJ{)&(ydhj}ZVd>F-_0gZqBlPdEC~UJ zsJG$Nq8WGLy%v|g@Xl`{C0Fi~g01gS{XtctEuWh8y2?NFTB=rP7`r)+_kkMRS%-1^ za9&2@v zXa0mX%6_3x@rRSZ^sWWYsU*24StdW!@7ewS#w3nmor+Y5M(W4gCXKvlW4$1u{Xs4> z2nTq)y!@(c*=;sla}|Rdy~|HKRQcWwHd<0{i7$_yA$-Dg za~noR{qweN@+>DO0)8J*8BNbzC)q*Z)Rzyc!Y5*;YH$hgUxG-=3NPfVWX;0<2WKpC A0RR91 literal 0 HcmV?d00001 diff --git a/figures/chap2fig1.svg b/figures/chap2fig1.svg new file mode 100644 index 0000000..fa7433b --- /dev/null +++ b/figures/chap2fig1.svg @@ -0,0 +1,175 @@ + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + B(nb) + A(na) + Y(nb) + X(na) + + diff --git a/references.tex b/references.tex index 0aacc0c..7e588e8 100644 --- a/references.tex +++ b/references.tex @@ -191,12 +191,10 @@ Cépaduès Ed. Toulouse, p. 195-208, ISBN: 978.2.36493.577.8. \bibitem{Lauvergeon} Lauvergeon A. (2012) La femme qui résiste, Plon. -\bibitem{Levy-Leblonda}Lévy-Leblond J.-M. (1981) L'esprit de sel, Fayard. -\bibitem{Levy-Leblondb}Lévy- Leblond J.-M. (1996) Aux contraires, NRF, Paris - -\bibitem{Levy-Leblondc}Lévy-Leblond, J.-M. (2006) La vitesse de l’ombre, Seuil. +\bibitem{Lerman} Lerman, I. C. (1970) Sur l'analyse des données préalable à une classification automatique (proposition d'une nouvelle mesure de similarité). Mathématiques et sciences humaines, 32, 5-15. + \bibitem{Lermana} Lerman I.-C., Gras R. and Rostam H. (1981) Elaboration et évaluation d'un indice d'implication pour des données binaires, I et II, Mathématiques et Sciences Humaines, n°74,, 5-35 and n° 75, 5-47 \bibitem{Lermanb} Lerman I.C. (1981) Classification et analyse ordinale des données, Paris, Dunod @@ -209,6 +207,14 @@ Cépaduès Ed. Toulouse, p. 195-208, ISBN: 978.2.36493.577.8. \bibitem{Levi-strauss} Lévi-Strauss C. (1967) Structures élémentaires de la parenté, De Gruyter Mouton. + + + \bibitem{Levy-Leblonda}Lévy-Leblond J.-M. (1981) L'esprit de sel, Fayard. + +\bibitem{Levy-Leblondb}Lévy- Leblond J.-M. (1996) Aux contraires, NRF, Paris + +\bibitem{Levy-Leblondc}Lévy-Leblond, J.-M. (2006) La vitesse de l’ombre, Seuil. + \bibitem{Loevinger} Loevinger J. (1947), A systematic approach to the construction and evaluation of tests of abilities, Psychological Monographs, 61, n° 4. -- 2.39.5