From bc528e875a70eb7d9dd810f644ba646bf6a4e6f6 Mon Sep 17 00:00:00 2001 From: couturie Date: Sat, 9 Mar 2019 11:36:05 +0100 Subject: [PATCH] new --- chapter2.tex | 44 ++++++++++++++++++++++++++++++++++++++++++++ references.tex | 3 +++ 2 files changed, 47 insertions(+) diff --git a/chapter2.tex b/chapter2.tex index 8ea057f..f492308 100644 --- a/chapter2.tex +++ b/chapter2.tex @@ -253,3 +253,47 @@ Assumptions: interval $[t,~ t+T[$ depends only on T; \item h3: two such events cannot occur simultaneously \end{itemize} + +It is then demonstrated (for example in~\cite{Saporta}) that the +number of events occurring during a period of fixed duration $n$ +follows a Poisson's law of parameter $c.n$ where $c$ is called the +rate of the apparitions process during the unit of time. + + +However, for each transaction assumed to be random, the event $[a=1]$ +has the probability of the frequency $\frac{n_a}{n}$, the event[b=0] +has as probability the frequency, therefore the joint event $[a=1~ + and~ b=0]$ has for probability estimated by the frequency +$\frac{n_a}{n}. \frac{n_{\overline{b}}}{b}$ in the hypothesis of absence of an a priori link between a and b (independence). + +We can then estimate the rate $c$ of this event by $\frac{n_a}{n}. \frac{n_{\overline{b}}}{b}$. + +Thus for a duration of time $n$, the occurrences of the event $[a~ and~ not~b]$ follow a Poisson's law of parameter : +$$\lambda = \frac{n_a.n_{\overline{b}}}{n}$$ + +As a result, $Pr[Card(X\cap \overline{Y})= s]= e^{-\lambda}\frac{\lambda^s}{s!}$ + +Consequently, the probability that the hazard will lead, under the +assumption of the absence of an a priori link between $a$ and $b$, to +more counter-examples than those observed is: + +$$Pr[Card(X\cap \overline{Y})\leq card(A\cap \overline{B})] = +\sum^{card(A\cap \overline{B})}_{s=0} e^{-\lambda}\frac{\lambda^s}{s!} $$ + + But other legitimate drawing processes lead to a binomial law, or + even a hypergeometric law (itself not semantically adapted to the + situation because of its symmetry). Under suitable convergence + conditions, these two laws are finally reduced to the Poisson Law + above (see Annex to this chapter). + +If $n_{\overline{b}}\neq 0$, we reduce and center this Poison variable +into the variable: + +$$Q(a,\overline{b})= \frac{card(X \cap \overline{Y})) - \frac{n_a.n_{\overline{b}}}{n}}{\sqrt{\frac{n_a.n_{\overline{b}}}{n}}} $$ + +In the experimental realization, the observed value of +$Q(a,\overline{b})$ is $q(a,\overline{b})$. +It estimates a gap between the contingency $(card(A\cap +\overline{B}))$ and the value it would have taken if there had been +independence between $a$ and $b$. + diff --git a/references.tex b/references.tex index 7e588e8..e11ef54 100644 --- a/references.tex +++ b/references.tex @@ -251,6 +251,9 @@ Cépaduès Ed. Toulouse, p. 195-208, ISBN: 978.2.36493.577.8. \bibitem{Regnierb} Régnier J.-C., Acioly-Régnier, N. M. (2007) Analyse cohésitive et interprétations des données dans le champ de l’éducation. In Régis Gras et al. Nouveaux apports théoriques à l’analyse statistique implicative et applications. Castellón: Innovació Digital Castelló. ISBN : 978-84-690-8241-6. p.329-343. +\bibitem{Saporta} Saporta G. (1990) Probabilités, Analyse de Données et statistique, Ed. Technip, Paris. + + \bibitem{Schelling} Schelling F.-W. (1994) Philosophie de la mythologie, p.361, Paris, J. Millon \bibitem{Seve} Sève L. (2005) Émergence, complexité et dialectique, Paris. -- 2.39.5