]> AND Private Git Repository - book_gpu.git/blob - BookGPU/Chapters/chapter8/ch8.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ddd58a358b806e4a027cb036d501726c1ce53a6b
[book_gpu.git] / BookGPU / Chapters / chapter8 / ch8.tex
1
2 \chapterauthor{Imen Chakroun and Nouredine Melab}{University of Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique, 59655 Villeneuve d'Ascq cedex, France\\}
3 %\chapterauthor{Nouredine Melab}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\}
4
5 \chapter{GPU-accelerated tree-based exact optimization methods}
6 \label{ch8:GPU-accelerated-tree-based-exact-optimization-methods}
7 \section{Introduction}
8 \label{ch8:introduction}
9
10 In practice, a wide range of problems can be modeled as NP-hard combinatorial optimization problems (COPs). Those problems consist of choosing the best combination out of a large finite set of possible combinations and are known to be large in size and difficult to solve optimality. One of the most popular methods for solving exactly a COP (finding a solution having the optimal cost, is the Branch-and-Bound (B\&B) algorithm. This algorithm is based on an implicit enumeration of all the feasible solutions of the tackled problem. Enumerating the solutions of a problem consists of building a dynamically generated search tree whose nodes are subsets of solutions of the considered problem. The construction of such a tree and its exploration is performed using four operators: branching, bounding, selection, and pruning. Due to the exponentially increasing number of potential solutions, the B\&B algorithm explores only promising nodes of the search tree using an estimated optimal solution called ``lower bound'' of the associated subproblem.\\
11
12 Although this bounding mechanism allows the considerable reduction of the exploration time, often only small or moderatelysized instances of COPs can be practically solved. For this reason, over the last decades, parallel computing has been revealed as an attractive way to deal with larger instances of COPs. However, while many contributions have been proposed for parallel B\&B methods using massively parallel processors \cite{ch8:Allen_1997}, networks or clusters of workstations \cite{ch8:Quinn_1990}, and Shared Memory Multiprocessors (SMP) machines \cite{ch8:Casadoa_2008}, very few contributions have been proposed for redesigning B\&B algorithms on Graphical Processing Units (GPUs) \cite{ch8:Carneiro_2011}. For years, the use of GPU accelerators was limited to graphics and video applications. Driven by the demand for high-definition 3D graphics on personal computers, GPUs have evolved into a highly parallel, multithreaded and many-core environment. Their utilization has recently been extended to other application domains such as scientific computing \cite{ch8:Kurzak_2010}.\\
13
14 In this chapter, we rethink the design and implementation of irregular tree-based algorithms such as the B\&B algorithm on top of GPUs. During the execution of the B\&B algorithm, the number of newly generated nodes and the number of not yet explored but promising nodes are variable and depend on the level of the tree being explored and on the best solution found so far. Therefore, due to such unstructured and unpredictable nature of its search tree, designing efficient B\&B on top of GPUs is not straightforward. We investigate two different approaches for designing GPU-based B\&B starting from the parallel models for B\&B identified in \cite{ch8:MelabHDR_2005}. The first one is based on the ``parallel tree exploration'' paradigm. This approach consists of exploring in parallel different subspaces of the tree. The second approach is based on the ``parallel evaluation of bounds'' approach. The two approaches have been applied to the permutation Flowshop Scheduling Problem \index{Flowshop Scheduling Problem} (FSP; see Section~\ref{ch8:BB-FSP}) which is an NP-hard combinatorial optimization problem. The lower bound function used in this work for FSP is the one proposed in~\cite{ch8:Johnson_1954} for two machines and generalized in~\cite{ch8:Lenstra_1978} to more than two machines.\\
15
16
17 When rethinking those two parallel models for GPU's architectures, our main focus was on the lower bound function. Indeed, preliminary experiments we carried out on some of Taillard's problem instances \cite{ch8:Taillard_1993} show that computing the lower bounds takes on average between 98\% and 99\% of the total execution time of the B\&B. The GPU-based lower bound's implementation raises mainly two challenges. On the one hand, having in mind that the execution model of GPUs is Single Instruction Multiple Data (SIMD), irregular computations (containing loops and conditional instructions) contained in the lower bound function may lead to a very challenging issue: the thread or branch divergence. This problem drops down the performance and arises when threads of a same warp (the smallest executable unit of parallelism on the GPU) execute different data-dependent instructions. On the other hand, the lower bound computation usually uses large and frequently accessed data structures. Since GPU is a many-core coprocessor device that provides a hierarchy of memories having different sizes and access latencies, the placement and sharing of these data sets become challenging.\\
18
19
20 The scope of this chapter is to design parallel B\&B algorithms on GPU accelerators to allow highly efficient solving of permutation-based COPs. To do so, our contributions consist of: (1) rethinking two approaches for parallel B\&B on top of GPUs, discussing the performances of each and identifying which best suits the GPU accelerators, (2) proposing a new approach for thread/branch divergence reduction through a thorough analysis of the different loops and conditional instructions of the bounding function, and (3) defining an optimal mapping of the data structures of the bounding function on the hierarchy of memories provided in the GPU device through a careful analysis of both the data structures (size and access frequency) and the GPU memories (size and access latency). \\
21
22
23 The chapter is organized into seven main sections. Section \ref{ch8:BB} presents the B\&B algorithm. Section \ref{ch8:Parallel-BB} introduces the different models used to parallelize B\&B algorithms. Section \ref{ch8:BB-FSP} briefly describes the Flowshop Scheduling permutation Problem. In Section~\ref{ch8:approach1}, we describe the GPU-accelerated B\&B based on the parallel tree exploration. In Section~\ref{ch8:approach2},  details about the second approach, the GPU-accelerated B\&B based on the parallel evaluation of lower bounds, are given. In Section \ref{ch8:ThreadDivergence}, the thread divergence issue related to the location of nodes in the B\&B tree and to the control flow instructions within the bounding operator is described. In Section \ref{ch8:DataAccessOpt}, the memory access optimization challenge is addressed and an overview of the GPU memory hierarchy and the used memory access pattern is given. In Section~\ref{ch8:Experiments}, we report experimental results showing the performances of each of two studied approaches compared to a sequential CPU-based execution of the B\&B and demonstrating the efficiency of the proposed optimizations.
24
25 \section{Branch-and-bound \index{Branch-and-bound} algorithm}
26 \label{ch8:BB}
27
28 Branch-and-bound algorithms are by far the most widely used methods for exactly solving large scale NP-hard combinatorial optimization problems. Indeed, they allow the finding of the optimal solution of a problem with proof of optimality. \\
29
30 The basic idea of the B\&B algorithm consists in implicitly enumerating all the solutions of the original problem by only examining a subset of feasible solutions and eliminating the others when they are not likely to lead to a feasible or an optimal solution. Enumerating the solutions of a problem consists of building a dynamically generated search tree whose nodes are subsets of solutions of the considered problem. The construction of such tree and its exploration are performed using four operators: branching, bounding, selection and pruning.\\
31
32 The algorithm proceeds in several iterations during which the best solution found so far is progressively improved. During the exploration process, the search space is analyzed by a pool of unexplored nodes and the best solution found so far. The generated and not yet examined (pending) nodes are kept in a list initialized with the original problem. At each iteration of the algorithm, the following steps are performed:
33
34 \begin{itemize}
35  \item The {\it selection operator} chooses one node to process among the pending nodes according to a defined strategy. If the selection is based on the depth of the subproblem in the B\&B tree, we speak about a depth-first exploration strategy. A selection based on the breadth of the subproblem is called a breadth-first exploration. A best-first selection strategy could also be used. It is based on the presumed capacity of the node to yield good solutions.
36  \item The {\it branching operator} subdivides a solution space into two or more disjointed subspaces to be investigated in a subsequent iteration.
37  \item The {\it bounding operator} computes a bound value of the optimal solution of each generated subproblem.
38  \item Each subproblem having a greater bound than the upper-bound, i.e., the cost of the best solution found so far, is eliminated using the {\it pruning operator}.
39 \end{itemize}
40
41 Algorithm \ref{ch8:algoBB} gives the general template of the branch-and-bound method.
42
43 \begin{algorithm}[H]
44
45 \SetAlgoLined  
46
47 \vspace{0.2cm}
48
49 Create the initial problem; \\
50 Inset the initial problem into the tree; \\
51 Set the Upper\_Bound to $\propto$;  \\
52 Set the Best\_Solution to $\emptyset$; \\
53
54 \While{ not\_empty\_tree() }
55 {
56     \vspace{0.2cm}      
57
58     Sub\_Problem = Take\_sub\_problem();  
59
60     \If{ Is\_leaf ( Sub\_Problem ) } 
61     {
62             Upper\_Bound = Cost\_Of( Sub\_Problem );\\
63             Best\_Solution = Sub\_Problem;
64     }
65     \Else
66     {
67        Lower\_Bound = compute\_lower\_bound(Sub\_Problem);
68       
69        \If{ Lower\_Bound $\leq$ Upper\_Bound } 
70        {        
71           Branch(Sub\_Problem); \\
72           Insert child subproblems into the tree; 
73        }        
74        \Else
75        {
76           Prune (Sub\_Problem); 
77        }
78     }
79 }
80
81 \caption{general template of the branch-and-bound algorithm.}
82 \label{ch8:algoBB}
83 \end{algorithm}
84
85 \section{Parallel branch-and-bound algorithms}
86 \label{ch8:Parallel-BB}
87
88 Thanks to the bounding operator, B\&B allows the significant reduction of the computing time needed to explore the whole solution space. However, finding an optimal solution for large instances remains impractical using a sequential B\&B. Therefore, parallel processing of these algorithms has been widely studied in the literature. In \cite{ch8:MelabHDR_2005}, a taxonomy of the various existing parallel paradigms used to parallelize the B\&B algorithm is presented.\\
89
90
91 This taxonomy based on the classification proposed in \cite{ch8:Gendron_1994} identified several models to accelerate the B\&B search. The first model we consider in this chapter is called ``parallel tree exploration model'' and belongs to the ``tree-based'' strategies that aim to build and explore the B\&B tree in parallel. The second model called ``parallel evaluation of bounds model'' (evaluation of bounds in parallel) belong to the parallelization approach called ``node-based''. This strategy aims to accelerate the execution of a particular operation at the node level.
92
93
94 \subsection{The parallel tree exploration model}
95 \label{ch8:para_tree}
96
97 Tree-based strategies consist of building and/or exploring the solution tree in parallel by performing operations on several subproblems simultaneously. This coarse-grained type of parallelism affects the general structure of the B\&B algorithm and makes it highly irregular.\\
98
99 The parallel tree exploration \index{parallel tree exploration} model, illustrated in Figure \ref{ch8:parallel_tree}, consists of visiting in parallel different paths of the same tree. The search tree is explored in parallel by performing the branching, selection, bounding, and elimination operators on several subproblems simultaneously.\\
100
101 \begin{figure}
102   \begin{center}
103 \includegraphics[scale=0.5]{Chapters/chapter8/figures/parallel_exploration.eps}%
104
105 \caption{Illustration of the parallel tree exploration model.}
106 \label{ch8:parallel_tree}
107   \end{center}
108 \end{figure}
109
110 \subsection{The parallel evaluation of bounds model}
111 \label{ch8:Node_parallel}
112
113 Node-based strategies introduce parallelism when performing the operations on a single problem. For instance, they consist of executing the bounding operation in parallel for each subproblem to accelerate the execution. This type of parallelism has no influence on the general structure of the B\&B algorithm and is particular to the problem being solved.\\
114
115 The parallel evaluation of bounds \index{parallel evaluation of bounds} model, as shown in Figure \ref{ch8:bounds_parallel}, allows the parallelization of the bounding of subproblems generated by the branching operator. This model is used in the case where the bounding operator is performed several times after the branching operator. Compared to the sequential B\&B, the model does not change the order and the number of explored subproblems in the parallel B\&B algorithm.
116
117 \begin{figure}
118   \begin{center}
119 \includegraphics[scale=0.5]{Chapters/chapter8/figures/parallel_bounding.eps}%
120
121 \caption{Illustration of the parallel evaluation of bounds model.}
122 \label{ch8:bounds_parallel}
123   \end{center}
124 \end{figure}
125
126 \section{The flowshop scheduling problem}
127 \label{ch8:BB-FSP}
128
129 \subsection{Definition of the flowshop scheduling problem} 
130
131 As a case study for our GPU-based branch-and-bound algorithm, we considered the NP-hard and well-known problem in the scheduling theory: the ``Permutation Flow-shop Scheduling Problem'' (FSP). 
132 In this work, the mono-objective case is considered. The FSP aims to find the optimal schedule of $n$ jobs on $m$ machines so that the overall completion time of all jobs, called {\it makespan}, is minimized. \\
133
134 Let us suppose the set of jobs is represented by $J = \{j_1, j_2, \dots, j_n\}$ and the set of machines is represented by $M=\{m_1,m_2, \dots, m_m\}$ organized 
135 in the line. Each job $j_i$ is a sequence of operations $j_i = { oi_1, oi_2, \dots, oi_m }$ where $oi_m$ is the duration required for the job $j_i$ on the machine $m$. 
136 A feasible solution of the flowshop permutation should satisfy these constraints:
137
138 \begin{itemize}
139  \item A machine cannot start processing a job if all the machines, which are located upstream, have not finished their treatment. Thus, the operation $oi_j$ cannot be processed by the machine $m_j$ if it is not completed on $m_{j - 1}$. 
140 \item An operation cannot be interrupted, and the machines are critical resources, because a machine processes one job at a time.
141 \item The sequence of jobs should be the same on every machine, e.g. if $j_3$ is treated in position 2 on the first machine, $j_3$ is also executed in position 2 on all machines.
142 \end{itemize}
143
144 Figure~\ref{flow-shop} illustrates a solution of a flow-shop problem instance defined by 6 jobs and 3 machines. 
145
146 \begin{figure}[h!]
147 \centering
148 \includegraphics[height=1.7cm,width=6.8cm]{Chapters/chapter8/figures/FlowShop.eps}
149 \caption{Flow-shop problem instance with 3 jobs and 6 machines.}
150 \label{flow-shop}
151 \end{figure}
152
153
154 \subsection{Lower bound \index{Lower bound} for the flowshop scheduling problem}
155
156 The lower bounding technique provides a lower bound (LB) for each subproblem generated by the branching operator. The more the bound is accurate, the more it allows the elimination  from the search tree that are not promising. Therefore, the efficiency of a B\&B algorithm depends strongly on the quality of its lower bound function. In this chapter, we use the lower bound proposed by Lenstra  et al.~\cite{ch8:Lenstra_1978} for FSP, based on the Johnson's algorithm~\cite{ch8:Johnson_1954}.\\
157
158
159 The Johnson's algorithm allows the  optimal solution of FSP with two machines ($m=2$) using the following transitive rule $\preceq$:
160
161 $$J_i \preceq J_j \Leftrightarrow \min(p_{i,1}\ ;\ p_{j,2}) \leq
162 \min(p_{i,2}\ ;\ p_{j,1})$$
163
164 We recall that $p_{k,l}$ designates the processing time of the job $J_k$ on the machine $M_l$. From the above rule, it follows the Johnson's theorem: \\
165
166 \textbf{Jonhson's theorem} \emph{Given $P$ an FSP with $m=2$, if $J_i\preceq J_j$ there exists an optimal schedule for $P$ in which the job $J_i$ precedes the job $J_j$.}\\
167
168 According to Johnson's theorem, FSP with $m=2$ is solved with a time complexity of $O(n.log n)$. The optimal solution is obtained by first sorting in increasing order the jobs having a
169 processing time shorter on the first machine than on the second one~; Second, sorting in decreasing order the jobs having a shorter processing time on the second machine. \\
170
171
172 In~\cite{ch8:JRJackson_1956} and~\cite{ch8:LGMitten_1959}, the Johnson's rule has been extended by Jackson and Mitten with lags which allowed further Lenstra {\it et al.} to propose a lower bound for FSP with $m \geq 3$. A lag~$l_j$ designates the minimum duration between the starting time of the job $J_j$ on the second machine and its finishing time on the first machine. Jackson and Mitten demonstrated that the optimal solution for FSP with $m=2$ can be obtained using the following transitive rule $\preceq$:
173
174 $$J_i \preceq J_j \Leftrightarrow \min(p_{i,1}+l_i\ ;\ l_j+p_{j,2})
175 \leq \min(l_i+p_{i,2}\ ;\ p_{j,1}+l_j)$$
176
177 Based on this rule, Lenstra {\it et al.}~\cite{ch8:Lenstra_1978} have proposed the following lower bound for a subproblem associated to a partial schedule where a set {\Large $\jmath$} of jobs have to be scheduled on $m$ machines. $P_{Ja}^*(\jmath,M_k,M_l)$ represents the Jackson-Mitten optimal solution for the subproblem that consists in scheduling the set {\Large $\jmath$} of jobs on the two machines $M_k$ and~$M_l$. The term  $r_{i,k} = \sum_{l<k} p_{i,l}$ designates the starting time of the job $J_i$ on the machine $M_k$. The other term $q_{j,l} = \sum_{k>l} p_{j,k}$ refers to the latency between the finishing time of $J_j$ on $M_l$ and the finishing time of the schedule.
178
179 $$LB(\jmath)=\max\limits_{1 \leq k < l \leq m}\{P_{Ja}^*(\jmath,M_k,M_l)+\min\limits_{(i,j)\in \jmath^2, i \neq
180 j}(r_{i,k}+q_{j,l}) \}$$
181
182 According to this $LB$ expression, the lower bound for the scheduling of a subset {\Large $\jmath$} of jobs is calculated by applying the Johnson's rule with lags considering all the couples
183 $(k,l)$ for $1 \leq k,l \leq m$ and $k<l$. As illustrated in Figure~\ref{LagKLExample}, the lag $l_j$ of a job $J_j$ for a couple $(k,l)$ of machines is the sum of the processing times of the job on
184 all the machines between~$k$~and~$l$.
185
186 \begin{figure}
187   \begin{center}
188 \includegraphics[width=8cm]{Chapters/chapter8/figures/johnson_with_lags.eps}%
189 \caption{The lag $l_j$ of a job $J_j$ for a couple $(k,l)$ of machines is the sum of the processing times of the job on all the machines between~$k$~and~$l$.}
190 \label{LagKLExample}
191   \end{center}
192 \end{figure}
193
194 \section{GPU-accelerated B\&B based on the parallel tree exploration (GPU-PTE-BB)}
195 \label{ch8:approach1} 
196
197 The first approach we investigate for designing B\&B on GPUs consists in exploring in parallel the generated search tree. The idea is to divide the global search space into disjoint sub-spaces that are explored in parallel by the GPU threads. As explained in Section \ref{ch8:BB}, during the execution of a B\&B, the search space is described by a list of unexplored (pending) nodes and the best solution found so far. In the considered GPU-based scheme, a set of parent nodes is selected from this list according to their depth: deepest pending nodes are the first selected. The selected pool of nodes is off loaded to the GPU where each thread builds its own local search tree by applying the {\it branching}, {\it bounding} and {\it pruning} operators to the assigned node.\\
198
199
200 \begin{figure}[h!]
201 \centering
202 \includegraphics[height=8cm, width=8.1cm]{Chapters/chapter8/figures/Diagram1.eps}
203 \caption{The overall architecture of the parallel tree exploration-based GPU-accelerated Branch-and-Bound algorithm.} 
204 \label{tree_approach}
205 \end{figure}
206
207
208 According to the CUDA threading model, each thread has a unique identifier used to determine its assigned role, assigns specific input and output positions and selects work to perform. Therefore, each node (problem) from the pending list is mapped to a thread to ensure that each sub-space of the solution space is evaluated concurrently and is disjoint from others. Figure \ref{tree_approach} illustrates the scheme of the parallel tree exploration-based GPU-accelerated B\&B.
209
210 \section{GPU-accelerated B\&B based on the parallel evaluation of bounds (GPU-PEB-BB) }
211 \label{ch8:approach2} 
212
213 In the GPU-accelerated B\&B based on the parallel evaluation of bounds, illustrated in Figure~\ref{ch8:approach}, the generation of the subproblems (elimination, selection and branching operations) to be solved is performed on CPU and the evaluation of their lower bounds (bounding operation) is executed on the GPU device. The pool of subproblems generated on CPU is off-loaded to the GPU device to be evaluated by a pool of threads partitioned into blocks. Each thread applies the lower bound function to one subproblem. Once the evaluation is completed, the lower bound values corresponding to the different subproblems is returned to the CPU to be used by the elimination operator to decide either to be pruned or to be decomposed. The process is iterated until the exploration is completed and the optimal solution is found. 
214
215
216 \begin{figure}[h!]
217   \begin{center}
218 \includegraphics[scale=0.3]{Chapters/chapter8/figures/approach.eps}%
219 \caption{The overall architecture of the GPU-accelerated Branch-and-Bound algorithm based on the parallel evaluation of bounds.}
220 \label{ch8:approach}
221   \end{center}
222 \end{figure}
223
224
225 In both considered approaches, GPU-PEB-BB and GPU-PTE-BB, the GPU-based lower bound's implementation raises mainly two challenges. The first one is related to the ``single instruction multiple data'' (SIMD) model of the GPU and to the implementation of the LB. Indeed, although typically every GPU thread will run the identical lower bound function, the body of the lower bound can contains conditions on thread identifiers and data. This implies that different instructions are executed in some threads. In SIMD architectures like GPUs this behavior leads to the thread or branch divergence issue. This problem arises when threads of a same warp execute different data-dependent instructions. It might causes serious performance declining since computation occurs in parallel only when the same instructions are being performed. The second challenge consists in adjusting the pattern of accesses to the GPU device memory. Good placement of data over the different memory hierarchy grants programmers to further improve the throughput of many high-performance CUDA applications. For B\&B applied to FSP, threads of the same block perform concurrent accesses to the six data structures of the problem when they execute the lower bound function. These data structures have different sizes and access frequencies and should be wisely placed on the different memories of the GPUs that also have different sizes and latencies. 
226
227
228 In the following, we present how we dealt with the thread/branch divergence issue and maps the different data structures on the memory hierarchy of the GPU device taking into account the characteristics of the data structures and those of the different GPU memories.
229
230
231 \section{Thread divergence}
232 \label{ch8:ThreadDivergence}
233
234 \subsection{The thread divergence issue}
235
236 During the execution of an application on GPU, to each GPU multiprocessor is assigned one or more thread block(s) to execute. Those threads are partitioned into warps that get scheduled for execution. For each  instruction of the flow, the multiprocessor selects a warp that is ready to be run. A warp executes one common instruction at a time, so full efficiency is realized when all threads of a warp agree on their execution path. In this chapter, the G80 model, in which a warp is a pool of 32 threads, is used. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken. Threads that are not on the taken path are disabled, and when all paths complete, the threads converge back to the same execution path. This phenomenon is called thread/branch divergence\index{Thread divergence} and often causes serious performance degradations. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjointed code paths.\\
237
238
239 This section discusses thread divergence issue encountered when computing the bounds by GPU. The thread divergence occurs for two main reasons, namely the locations of nodes in the search tree and the control flow instructions within the bounding operator. \\
240
241
242 \textbf{Divergence related to the location of nodes}\\
243
244
245 This divergence is related to the positions of the nodes in the B\&B search tree. Below is given an example from the source code of the used LB showing that the execution flow depends on the position of the node in the search tree. In the following piece of code, three methods are used {\it is\_leaf()}, {\it makespan()} and {\it lower\_bound()}. {\it is\_leaf()} tests if the node {\it \_node} is a leaf or an internal node. If {\it \_node} is a leaf, {\it makespan()} computes the cost of its makespan. Otherwise, {\it \_node} is an internal node and {\it lower\_bound()} computes the value of its lower bound. 
246
247 \begin{verbatim}
248         if (_node.is_leaf())
249            return _node.makespan();
250         else
251            return _node.lower_bound();
252 \end{verbatim}\\
253
254
255 \textbf{Divergence related to the control flow instructions}\\
256
257
258 Control flow refers to the order in which the instructions, statements or function calls are executed in a program. This flow is determined by instructions such as {\it if-then-else}, {\it for}, {\it while-do}, {\it switch-case}, etc. There are a dozen of such instructions in the implementation of our bounding operator. The source code examples given below show two scenarios in which this kind of instructions is used.
259
260 \begin{itemize}
261 \item Example 1:\\ \vspace{-0.4cm}
262 \begin{verbatim}
263    if( pool[thread_idx].begin != 0 ) 
264       time = TimeMachines[1] ;
265    else
266       time = TimeArrival[1] ;
267 \end{verbatim}
268
269 \item Example 2:\\ \vspace{-0.4cm} 
270 \begin{verbatim}
271    for(int k = 0 ; k < pool[thread_idx].begin; k++)
272       jobTime = jobEnd[k] ;  
273 \end{verbatim}
274
275 \end{itemize}
276
277 In these two examples, {\it thread\_idx} is the index associated to the current thread. Let suppose that the code of Example 1 is executed by $32$ threads, {\it pool[thread\_idx].begin} is equal to $0$ for the first thread, and {\it pool[thread\_idx].begin} is not equal to $0$ for the other $31$ threads. When the first thread executes the statement {\it ``time = TimeArrival[1];''}, 
278 all the other $31$ threads remain idle. Therefore, the GPU cores on which these $31$ threads are executed remain idle and can not be used during the execution of the statement {\it ``time = TimeArrival[1];``}. \\
279
280
281 The same scenario occurs during the execution of Example 2. Let us suppose that the instruction is executed by $32$ threads, {\it pool[thread\_idx].begin} is equal to $100$ for the first thread, and {\it pool[thread\_idx].begin} is equal to $0$ for the other $31$ threads. When the first thread executes the loop $for$, all the other $31$ threads remain idle. \\
282
283
284 Existing techniques for handling branch divergence either demand hardware support \cite{ch8:Fung} or require host-GPU interaction \cite{ch8:Zhang}, which incurs overhead. Some other works such as \cite{ch8:Han} intervene at the code level. They expose a branch distribution method that aims to reduce the divergent portion of a branch by factoring out structurally similar code from the branch paths. In our work, we have also opted for software-based optimizations like \cite{ch8:Han}. In fact, we figure out how to literally rewrite the branching instructions into basic ones in order to make thread execution paths uniform. We also demonstrate that we could ameliorate performances only by judiciously reordering data being assigned to each thread.
285
286 \subsection{Mechanisms for reducing branch divergence}
287
288
289  \textbf{Thread-data reordering}\\
290
291 At each iteration of our GPU-accelerated B\&B approach, several thousands of subproblems are sent to the GPU. The GPU groups the received subproblems into several warps according to their reception order. The first 32 subproblems belong to the first warp, the following 32 subproblems belong to the second warp, etc. Therefore, thread-data reordering technique sorts subproblems before sending them to the GPU. These subproblems are sorted according to their position in the B\&B tree. This sort of subproblems allows to have warps containing more homogeneous subproblems, and reduces the number of thread divergences. \\
292
293
294  \textbf{Branch refactoring}\\
295
296
297 As quoted above, thread or branch divergence occurs when the kernel includes conditional instructions and loops that make the threads performing different control flows leading to their serial execution. In this chapter, we investigate the branch refactoring approach to deal with thread divergence. Branch refactoring consists in rewriting the conditional instructions so that threads of the same warp execute an uniform code avoiding their divergence. To do that, two major ``if" scenarios are studied and some optimizations are proposed accordingly. These two scenarios correspond to the conditional instructions contained in the $LB$ kernel code. In the first scenario, the conditional expression is a comparison of the content of a variable to 0. For instance, the following example extracted from the pseudo-code of the lower bound $LB$ illustrates such scenario.\\
298
299
300 \begin{tabular}{l}
301 \\
302 \small
303 \textsf{ if ( pool[thread\_idx].limit1 $\neq$ 0 ) tmp = MM[1];  }\\
304 \small
305 \textsf{ else  tmp = RM[1] ; }\\  \\
306 \end{tabular}
307
308
309 The refactoring idea is to replace the conditional expression by two functions namely $f$ and $g$ as shown in Equation~\ref{ch8:Eq1}.\\
310
311
312 The behavior of $f$ and $g$ fits the cosine trigonometric function. These functions return values between $0$ and $1$. An integer variable is used to store the result of the cosine function. Its value is $0$ or $1$ since it is rounded to $0$ if it is not equal to~$1$. In order to increase the performance the CUDA runtime math operations are used: $sinf(x)$, $expf(x)$ and so forth. Those functions are mapped directly to the hardware level~\cite{ch8:cuda}. They are faster but provide lower accuracy which does not matter in our case because the results are rounded to $int$. 
313
314 \begin{equation}
315 \begin{array}{lllllllll}
316 \small
317     &\multicolumn{8}{l}{ if (x \neq 0) ~ a = b[1]; ~~~~~~ if (x \neq 0) ~ a = b[1] + 0 \times c[1];} \\
318     & \multicolumn{2}{l}{} & ~~~~~~\Rightarrow & \multicolumn{2}{l}{} \\
319     &\multicolumn{2}{l}{\emph{else}}    $a = c[1];$ &     &\multicolumn{2}{l}{\emph{else}} $a = 0 \times b[1] + c[1];$ \\\\
320     & \multicolumn{6}{l}{\Rightarrow a = f(x) \times b[1] + g(x) \times c[1];}\\ \\
321     &\multicolumn{6}{l}{\emph{where:}}\\
322     &&\multicolumn{6}{l}{ f(x)=\left\{
323                     \begin{array}{lll}
324                         f(x) = 0    & if &x = 0\\
325                         1           &else\\
326                     \end{array}
327                 \right.}\\
328      &\multicolumn{6}{l}{\emph{and}}\\
329     &&\multicolumn{6}{l}{g(x)=\left\{
330                     \begin{array}{lll}
331                         g(x) = 1    & if &x = 0\\
332                         0           &else & \\
333                     \end{array}
334                   \right.}
335 \end{array}
336 \label{ch8:Eq1}
337 \end{equation}\\
338
339
340 The throughput of $sinf(x)$, $cosf(x)$, $expf(x)$ is one operation per clock cycle~\cite{ch8:cuda}. The refactoring result for the ``if" pseudo-code given above is the following:
341
342
343 \begin{tabular}{l}
344 \\
345 \small
346 \textsf{int coeff = \_\_cosf (pool[thread\_idx].limit1);}\\
347 \small
348 \textsf{tmp = (1 - coeff) $\times$ MM[1] +  coeff $\times$ RM[1];}\\ \\
349 \end{tabular}
350
351
352 The second "if" scenario considered in our study compares two values between themselves as shown in Equation~\ref{ch8:Eq2}.
353
354
355 \begin{equation}
356 \begin{array}{lllllllll}
357 \small
358     &\multicolumn{8}{l}{if (x > y)  a = b[1];~~~ \Rightarrow if (x - y \geq 1)   a = b[1];}\\\\
359     \Rightarrow &\multicolumn{6}{l}{if (x - y - 1 \geq 0)}& a = b[1];~~~~~ (x, y) \in N\\\\
360     \Rightarrow &\multicolumn{4}{l}{a = f(x, y) \times b[1] + g(x,y) \times a;}\\\\
361     &\multicolumn{6}{l}{\emph{where:}}\\
362     &&\multicolumn{6}{l}{ f(x,y)=\left\{
363                     \begin{array}{lll}
364                         1    & if &x - y - 1 \geq 0\\
365                         0    &if&x - y - 1 < 0\\
366                     \end{array}
367                 \right.}\\
368     &\multicolumn{6}{l}{\emph{and}}\\
369     &&\multicolumn{6}{l}{g(x,y)=\left\{
370                     \begin{array}{llll}
371                         0    & if &x - y - 1 \geq 0\\
372                         1    &if&x - y - 1 < 0 & \\
373                     \end{array}
374                 \right.}\\\\
375 \end{array}
376 \label{ch8:Eq2}
377 \end{equation}
378
379
380 For instance, the following example extracted from the pseudo-code of the lower bound $LB$ illustrates such scenario.\\
381
382
383 \footnotesize
384 \begin{tabular}{ll}
385 \\
386 \multicolumn{2}{l}{\textsf{if(RM[1]] $>$ MIN )}\{}  \textsf{Best\_idx = Current\_idx;}  \textsf{\}}\\\\
387 \end{tabular}
388 \normalsize \\
389
390
391 The same transformations as those applied for the first scenario are applied here using the exponential function. Recall that the exponential is a positive function which is equal to $1$ when applied to $0$. Thus, if $x$ is greater than $y$ then $expf(x-y-1)$ returns a value between $0$ and $1$. If the result is rounded to an integer value $0$ will be obtained. Now, if $x$ is less than $y$ then $expf(x-y-1)$ returns a value greater than $1$ and since the minimum between $1$ and the exponential is get, the returned result would be $1$. Such behavior satisfies exactly our prerequisites. The above ``if" instruction pseudo-code is now equivalent to:
392
393
394 \small
395 \begin{tabular}{l}
396 \\
397 \textsf{int coeff = min(1, \_\_expf(RM[1] - MIN - 1)); }\\
398 \textsf{Best\_idx = coeff $\times$ Current\_idx + ( 1 - coeff ) $\times$ Best\_idx ;}\\
399 \end{tabular}
400 \normalsize
401
402 \section{Memory access optimization}
403 \label{ch8:DataAccessOpt}
404
405 Memory access optimizations \index{Memory access optimizations} are by far the most studied area for improving GPU-based application performances. Indeed, adjusting the pattern of accesses to the GPU device memory grants programmers to further improve the throughput of many high-performance CUDA applications. The goal of memory access optimizations is generally to use as much fast memory and as little slow-access memory as possible. This section discusses how best to set up data LB items on the various kinds of memory on the device.   \\
406
407
408 CUDA enabled devices use several memory spaces, which have different characteristics in term of sizes and access latencies. These memory spaces include global memory, local memory , shared memory, texture memory , and registers. Devices of compute capability 2.0 have also an L1 $/$ L2 cache hierarchy that is used to cache local and global memory accesses.
409
410 \begin{itemize}
411 \item At the thread-level, each thread has its own allocated registers and a private local memory. CUDA uses this local memory for thread-private variables that do not fit in the threads registers, as well as for stack frames and register spilling. \item At the thread block-level, each thread block has a shared memory visible to all its associated threads. \item At the grid-level, all threads have access to the same global memory. Texture and constant cached memories are two other memories accessible by all threads. 
412 \end{itemize}
413
414 The data access optimization challenge is to find the best mapping of the data structures of the application at hand (different sizes and access frequencies) and the GPU hierarchy of memories (different sizes and access latencies). For instance, of these different memory spaces, global memory is the most plentiful but the one with the highest access latency. On the contrary, shared memory is smaller in size but has much higher bandwidth and lower latency than the global memory.
415
416 \subsection{Complexity analysis of the memory usage of the lower bound }
417
418 In this section, the characteristics of the data structures used by the lower bound function are studied in terms of sizes and access frequencies. For an efficient implementation of the LB, six data structures are required: the  matrix $PTM$ of the processing times of the jobs, the matrix of lags $LM$, the Johnson's matrix $JM$, the matrix $RM$ of the earliest starting times of jobs, the matrix $QM$ of their lowest latency times and the matrix $MM$ containing the couples of machines. The complexities of the different data structures are summarized in Table~\ref{ch8:tabMemComplex} where the columns represent respectively the name of the data structure, its size and the number of times it is accessed.\\
419
420
421 In the $LB$ expression, the computation of the term $P_{Ja}^*(\jmath,M_k,M_l)$ requires the calculation of the lag of each remaining job to be scheduled on the couple $(M_k,M_l)$ of machines using its processing times on these machines (Johnson's rule with lags). Such computation is repeated for each couple $(M_k,M_l)$ of machines with $1 \leq k,l \leq m$ and $k<l$. To avoid the repetitive computation of the lags, they are computed once at the beginning of the algorithm and stored in the matrix $LM$. The dimension of $LM$ is $n \times \frac{m\times (m-1)}{2}$, where $n$ and $m$ are respectively the number of jobs to be scheduled and $m$ the number of machines. $LM$ is accessed $n' \times \frac{m \times (m-1)}{2}$ times, $n'$ being the number of remaining jobs to be scheduled in the subproblem for which the lower bound is being calculated. The processing times of all the jobs on all the machines are stored in the matrix $PTM$. This matrix has a dimension of $n \times m$ and is accessed $n' \times m \times (m-1)$ times.\\
422
423
424 In addition, in order to avoid relaunching the Johnson's algorithm for each couple of machines and each subset of jobs, the Johnson's algorithm is computed once to find the optimal solutions on the couples of machines. These optimal solutions are then stored in the Johnson's matrix $JM$. This matrix has the same dimension as $LM$ and is accessed $n \times \frac{m \times (m-1)}{2}$ times during the computation of the lower bound. Finally, the $MM$ matrix that contains all the couples of machines has a dimension and access frequency of $m \times (m-1)$.  \\
425
426
427 To reduce the computation time cost of the term $\min\limits_{(i,j)\in \jmath^2, i \neq j}(r_{i,k}+q_{j,l})$ in the $LB$ expression, two matrices are defined, namely $RM$ and $QM$. They are used to store respectively the lowest starting and latency times of all the jobs on each machine. Their dimension is $m$ and are accessed $ m \times (m-1)$ times and $ \frac{m \times (m-1)}{2}$ times respectively.
428
429 \begin{table}
430   \centering
431 \begin{tabular}{|c|c|c|}
432 \hline
433   \textbf{Matrix} & \textbf{Size} & \textbf{Number of accesses} \\
434  \hline
435  \hline
436    PTM &  $n \times m$ & $n' \times m \times (m-1)$ \\
437  \hline
438    LM & $n \times \frac{m \times (m-1)}{2}$ & $n' \times \frac{m \times (m-1)}{2}$ \\
439  \hline
440    JM & $n \times \frac{m \times (m-1)}{2}$ & $n \times \frac{m \times (m-1)}{2}$ \\
441  \hline
442    RM &  $m$ & $m \times (m-1)$ \\
443  \hline
444    QM &  $m$ & $\frac{m \times (m-1)}{2}$ \\
445  \hline
446    MM &  $m \times (m-1)$ & $m \times (m-1)$ \\
447  \hline
448 \end{tabular}
449  \caption[The different data structures of the $LB$ algorithm and their associated complexities in memory size and numbers of accesses.]{The different data structures of the $LB$ algorithm and their associated complexities in memory size and numbers of accesses. The parameters $n$, $m$ and $n'$ designate respectively the total number of jobs, the total number of machines and the number of remaining jobs to be scheduled for the subproblems the lower bound is being computed.}
450 \label{ch8:tabMemComplex}
451 \end{table}
452
453 \subsection{Data placement pattern of the lower bound on GPU}
454
455 This section discusses how best to map the six data structures identified above on the various kinds of memories of the GPU device.\\
456
457
458 The focus is put on the shared memory which is a key enabler for many high-performance CUDA applications. Indeed, because it is on-chip, shared memory has much higher bandwidth and lower latency than local and global memory. However, for large problem instances (large $n$ and $m$) the data structures especially JM and LM (see Table \ref{ch8:tabMemSizes}), do not fit in the shared memory for some GPU configurations. \\
459
460
461 In order to achieve further performances, we also take care of adequately use the global memory by judiciously configuring the L1 cache which greatly enables improving performance over direct access to global memory. Indeed, the GPU device we are using in our experiments is based on the NVIDIA Fermi architecture which introduced two new hierarchies of memories (L1 $/$ L2 cache)
462 compared to older architectures. 
463
464 \begin{table}
465   \centering
466   \footnotesize
467   \begin{tabular}{|r|r|r|r|r|r|}
468     \hline
469 Prob. instance & JM & LM & PTM & RM, QM & MM \\
470     \hline
471     \hline
472 $200 \times 20$ & 38.000 (38KB) & 38.000 (76KB) & 4.000 (4KB) & 20 (0.04KB) & 380 (0.76KB) \\
473     \hline
474 $100 \times 20$ & 19.000 (19KB) & 19.000 (38KB) & 2.000 (2KB) & 20 (0.04KB) & 380 (0.76KB) \\
475     \hline
476 $50 \times 20$ & 9.500 (9.5KB) & 9.500 (19KB) & 1.000 (1KB) & 20 (0.04KB) & 380 (0.76KB) \\
477     \hline
478 $20 \times 20$ & 3.800 (3.8KB) & 3.800 (7.6KB) & 400 (0.4KB) & 20 (0.04KB) & 380 (0.76KB) \\
479    \hline
480   \end{tabular}
481 \caption[The sizes of each data structure for the different experimented problem instances.]{The sizes of each data structure for the different experimented problem instances. The sizes are given in number of elements and in bytes (between brackets).}
482 \label{ch8:tabMemSizes}
483 \end{table}
484
485
486 Taking into consideration the sizes of each data structure presented in Table \ref{ch8:tabMemSizes}, our challenge is to find which data structure has to be mapped on which memory and in some cases how to split the data  structures on different memories and efficiently manage their accesses. The sizes in bytes reported in Table \ref{ch8:tabMemSizes}, are computed knowing that in our implementation the elements of $JM$ and $PTM$ are unsigned chars (one byte) and that the elements of $LM$, $RM$, $QM$ and $MM$ are unsigned short ints (2 bytes). It is important here to highlight that the types of the data of the used matrices impact the size of each matrix. For instance, a matrix of $100$ integers has a size of $400$ octets while the same matrix with $100$ unsigned chars has a size of $100$ octets. In order to minimize the size of each of the used matrices, we analyzed the ranges of their values and defined their data types accordingly. For instance, in PTM all the processing times have positive values varying between $0$ and $100$. Therefore, we defined PTM as a matrix of \verb|unsigned char| having values in the range $[0, 255]$. Using the \verb|unsigned char| type instead of the integer type allows us to reduce by $4$ times the memory space occupied by PTM.\\
487
488
489 According to the Table \ref{ch8:tabMemSizes} :
490
491 \begin{itemize}
492  \item The data structures $RM$, $QM$ and $MM$ are small sized matrices. Therefore, their impact on the performances is not significant whatever is the memory to which they are off-loaded. In particular, preliminary experiments proves that putting them on the shared memory would allows a very poor performance improvement. 
493 \item The $LM$ data structure is the double of the $JM$ in memory size but with a much lower access frequency. It is thus better to map $JM$ on the shared memory.
494 \item The $PTM$ has almost the same access frequency than $JM$ but requires less memory space.
495 \end{itemize}
496   
497 Consequently, the focus is put on the study of the performance impact of the placement of $JM$ and $PTM$ on the shared memory. Three placement scenarios of $JM$ and $PTM$ are experimented and studied: (1) Only $PTM$ is stored in shared memory and all others are placed in global memory~; (2) Only $JM$ is stored in shared memory and all others are placed on global memory~; (3) $PTM$ and $JM$ are stored together in shared memory and all others are placed on global memory. \\
498
499
500 Taking profit from the configurable storage space provided in the new Fermi-based devices, the $64$ KB of local storage was spitted between the shared memory and the L1 cache according to the experimented scenario.
501
502 \begin{itemize}
503 \item For the scenario were the data structures are put on the shared memory the $64$ KB of available storage are split on $48$ KB for shared memory and $16$ KB for L1 cache.
504 \item For the scenario where the data sets are put on global memory we used $16$ KB for shared memory and $48$ KB for L1 cache.
505 \end{itemize}
506
507 \section{Experiments}
508 \label{ch8:Experiments}
509
510 In the following, we present the experimental study  we have performed with the aim to evaluate the performance impact of the GPU-accelerated bounding, the techniques for reducing the thread divergence and the proposed approach for data placement on the GPU memories. 
511
512 \subsection{Parameters settings} 
513
514 In our experiments, we used the flow-shop instances defined by Taillard \cite{ch8:Taillard_1993}. These standard instances are often used in the literature to evaluate the performance of methods that minimize the makespan. Optimal solutions of some of these instances are still not known. These instances are divided into groups of $10$ instances. In each group, the $10$ instances  are defined by the same number of jobs and the same number of machines. The groups of 10 instances have different numbers of jobs, namely $20$, $50$, $10$, $200$ and $500$, and different numbers of machines, namely $5$, $10$ and $20$. For example, there are $10$ instances with $200$ jobs and $20$ machines belonging to the same group of instances.\\
515
516
517 In this work, we used only the instances where the number of machines is equal to $20$. Indeed, instances where the number of machines is equal to $5$ or $10$ are easy to solve. For these instances, the used bounding operator gives so good lower bounds that it is possible to solve them in few minutes using a sequential B\&B. Therefore, these instances do not require the use of a GPU.\\
518
519
520 Our approach has been implemented using C-CUDA 4.0. The experiments have been carried out using a an Intel Xeon E5520 bi-processor coupled with a GPU device. The bi-processor is 64-bit, quad-core and has a clock speed of 2.27GHz. The GPU device is an Nvidia Tesla C2050 with 448 CUDA cores (14 multiprocessors with 32 cores each), a clock speed of 1.15GHz, a 2.8GB global memory, a 49.15KB shared memory, and a warp size of 32.
521
522 \subsection{Experimental protocol: computing the speedup}
523 \label{ch8:Protocol}
524
525 We need to compute the speed up of our approach to evaluate its performances. This speed up is obtained by comparing our GPU B\&B version to a sequential B\&B version deployed on one CPU core. However, all the instances used in our experiments are extremely hard to solve. Indeed, the resolution of each of these instances requires several months of computation on one CPU core. For example, the optimal solution of one of these instances defined by $50$ jobs and $20$ machines is obtained after $25$ days of computation using an average of $328$ CPU cores \cite{ch8:Mezmaz_2007}. \\
526
527
528 Using the approach defined in \cite{ch8:Mezmaz_2007}, it is possible to obtain a random list $L$ of subproblems such as the resolution of $L$ lasts $T$ minutes with a sequential B\&B. So by initializing the pool of our sequential B\&B with the subproblems of this list $L$, we are sure that the resolution of the sequential B\&B will last $T{cpu}$ minutes such as $T{cpu}$ will be approximately equal to $T$. Therefore, it will be possible to initialize the pool of our GPU B\&B with the same list $L$ of subproblems in order to compute the speed up. Let suppose that the resolution of the GPU B\&B will last $T{gpu}$ minutes. So the speed up of our GPU algorithm will be equal to $Tcpu/Tgpu$. With this experimental protocol, the subproblems explored by the GPU and CPU B\&B versions will be exactly the same. So to find the speed up associated to an instance, we:
529
530 \begin{itemize}
531 \item compute, using the approach defined in \cite{ch8:Mezmaz_2007}, a list $L$ of subproblems such as the resolution of $L$ lasts $T$ minutes with a sequential B\&B, 
532 \item initialize the pool of our sequential B\&B with the subproblems of this list $L$, 
533 \item solve the subproblems of this pool with our sequential B\&B ,
534 \item get the sequential resolution time $T{cpu}$ and the number of explored subproblems $N{cpu}$, 
535 \item check that $T{cpu}$ is approximately equal to $T$, 
536 \item initialize the pool of our GPU B\&B with the subproblems of the list $L$, 
537 \item solve the subproblems of this pool with our GPU B\&B,
538 \item get the GPU resolution time $T{gpu}$ and the number of explored subproblems $N{gpu}$, 
539 \item check that $N{gpu}$ is exactly equal to $N{cpu}$, 
540 \item and finally compute the speed up associated to this instance by dividing $T{cpu}$ on $T{gpu}$ (i.e. $Tcpu/Tgpu$).
541 \end{itemize}
542
543
544 Table \ref{ch8:instance_time} gives, for each instance according to its number of jobs and its number of machines, the used resolution time with a sequential B\&B. For example, the sequential resolution time of each instance defined with $20$ jobs and $20$ machines is approximately 10 minutes. Of course, the computation time of the lower bound of a subproblem defined with $20$ jobs and $20$ machines is on average greater than the computation time of the lower bound of a subproblem defined with $50$ jobs and $20$ machines. Therefore, as shown in this table, the sequential resolution time increases with the size of the instance in order to be sure that the number of subproblems explored is significant for all instances.  
545
546 \begin{table}
547 \setlength{\tabcolsep}{0.2cm}
548 \renewcommand{\arraystretch}{1.2}
549 \centering
550 \footnotesize
551 \begin{tabular}{|r|r|r|r|r|}
552 \hline
553 Instance (No. of jobs x No. of machines) & 20$\times$20 & 50$\times$20  & 100$\times$20 & 200$\times$20 \\
554 \hline
555 Sequential resolution time (minutes) & 10 & 50  & 150 & 300 \\
556 \hline
557 \end{tabular}
558 \caption{The sequential resolution time of each instance according to its number of jobs and machines}
559 \label{ch8:instance_time}
560 \end{table}
561
562 \subsection{Performance impact of GPU-based parallelism}
563
564 The objective of the experimental study presented in this section is to compared the performances of both proposed approaches for designing B\&B on top of GPUs. 
565
566 Table \ref{ch8:ParaGPU1} and Table~\ref{ch8:ParaGPU2} report respectively the speedups obtained with the GPU-PTE-BB and GPU-PEB-BB approaches for different problem instances. The first part of both tables gives the size of the pool generated and evaluated on the GPU. The second part of the tables gives the average speedup for each group of instances and for each pool size. Each line corresponds to a group of $10$ instances defined by the same number of jobs and the same number of machines. 
567
568 The results obtained with the GPU-PTE-BB approach (see Table \ref{ch8:ParaGPU1}) show that exploring in parallel the tree search allows to speedup the execution of the B\&B compared to a CPU-based execution. Indeed, an acceleration factor up to 40.50 is obtained for the 20 $\times$ 20 problem instances using a pool of 262144 subproblems. 
569
570 The results show also that the parallel efficiency decreases with the size of the problem instance. For a fixed number of machines (here 20 machines) and a fixed pool size, the obtained speedup decline accordingly with the number of jobs. For instance for a pool size of 262144, the acceleration factor obtained with 200 jobs (13.4) while it is (40.50) for the instances with 20 jobs. This behavior is mainly due to the overhead induced by the transfer of the pool of resulting subproblems between the CPU and the GPU. For example, for the instances with 200 jobs the size of the pool to exchange between the CPU and the GPU is ten times bigger than the size of the pool for the instances with 20 jobs.
571
572 \begin{table}
573 \setlength{\tabcolsep}{0.2cm}
574 \renewcommand{\arraystretch}{1.2}
575   \centering
576   \footnotesize
577  \begin{tabular}{|r|r|r|r|r|r|r|r|}
578     \hline
579 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
580     \hline
581     \hline
582 (NJobs $\times$ NMachines) & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
583     \hline
584 $200 \times $20 & 1.12 & 2.89 & 3.57 & 4.23 & 6.442 & 8.32 & 13.4\\
585     \hline
586 $100 \times $20 & 1.33 & 1.88 & 3.45 & 6.45 & 12.38 & 20.40 & 28.76 \\
587     \hline
588 $50 \times $20 & 2.70 & 3.80 & 6.82 & 13.04 & 23.53 & 30.94 & 37.66\\
589     \hline
590 $20 \times $20 & 6.43 & 11.43 & 20.14 & 27.78 & 30.12 & 35.74 & 40.50\\
591     \hline
592     \hline
593 % Total average speedup & 2.895 & 5.0 & 8.495 & 14.625 & 22.61 & 30.6 & 41.65\\   
594 %     \hline
595 %     \hline
596   \end{tabular}
597   \caption{Speedups for different problem instances and pool sizes with the GPU-PTE-BB approach.}
598 \label{ch8:ParaGPU1}
599 \end{table}
600
601 The results obtained with the GPU-PEB-BB approach (see Table \ref{ch8:ParaGPU2}) show that evaluating in parallel the bounds of a selected pool, allow to significantly speedup the execution of the B\&B. Indeed, an acceleration factor up to 71.69 is obtained for the 200 $\times$ 20 problem instances using a pool of 262144 subproblems. The results show also that the parallel efficiency grows with the size of the problem instance. For a fixed number of machines (here 20 machines) and a fixed pool size, the obtained speedup grows accordingly with the number of jobs. For instance for a pool size of 262144, the acceleration factor obtained with 200 jobs (71.69) is almost the double of the one obtained with 20 jobs (38.40). 
602
603 As far the pool size tuning is considered, we could notice that this parameter depends strongly on the problem instance being solved. Indeed, while the best acceleration is obtained with a pool size of 8192 subproblems for the instances 50 $\times$ 20 and 20 $\times$ 20, the best speedups are obtained with a pool size of 262144 subproblems with the instances 200 $\times$ 20 and 100 $\times$ 20.\\
604
605 \begin{table}
606 \setlength{\tabcolsep}{0.2cm}
607 \renewcommand{\arraystretch}{1.2}
608   \centering
609   \footnotesize
610  \begin{tabular}{|r|r|r|r|r|r|r|r|}
611     \hline
612 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
613     \hline
614     \hline
615 (NJobs $\times$ NMachines) & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
616     \hline
617 $200 \times $20 & 42.83 & 56.23 & 57.68 & 61.21 & 66.75 & 68.30 & \textbf{71.69}\\
618     \hline
619 $100 \times $20 & 42.59 & 56.18 & 57.53 & 60.95 & 65.52 & 65.70 & \textbf{65.97}\\
620     \hline
621 $50 \times $20 & 42.57 & \textbf{56.15} & 55.69 & 55.49 & 55.39 & 55.27 & 55.14\\
622     \hline
623 $20 \times $20 & 38.74 & \textbf{46.47} & 45.37 & 41.92 & 39.55 & 38.90 & 38.40\\
624     \hline
625     \hline
626 % Total average speedup & 41.68 & 53.76 & 54.07 & 54.89 & 56.80 & 57.04 & 57.80\\
627 %     \hline
628 %     \hline
629   \end{tabular}
630   \caption{Speedups for different problem instances and pool sizes with the GPU-PEB-BB approach.}
631 \label{ch8:ParaGPU2}
632 \end{table}
633
634 Compared to the parallel tree exploration-based GPU-accelerated B\&B approach, the parallel evaluation of bounds approach is by far much more efficient wherever the instance is. For example, while the GPU-PEB-BB approach reaches speedup of $\times$71.69 for the instance with 200 jobs on 20 machines, a speedup of a $\times$13.4 is measured with the parallel tree exploration-based approach which corresponds to an acceleration of $\times$5.56 . Moreover, on the contrary to the GPU-PEB-BB approach, in the GPU-PTE-BB the speedups decrease when the problem instance becomes higher. Remember here that while in the GPU-PEB-BB approach all threads evaluate only one node each whatever the permutation size is. In the GPU-PTE-BB, each thread branches all the children of its assigned parent node. Therefore, the bigger the size of the permutation is, the bigger the amount of work performed by each thread is and the bigger the difference between the workload is. Indeed, let us suppose that for the instance with $200$ jobs, the thread $0$ handles a node from the level $2$ of the tree and the thread $100$ handles a node from the level $170$ of the tree. In this case, the thread $0$ generates and evaluates $198$ nodes while the thread $100$ decomposes and bounds only $30$ nodes. The problem in this example is that the kernel execution would last until the thread $0$ finishes its work while the other threads might have ended their works and stayed idle.
635
636 \subsection{Thread divergence reduction}
637
638 The objective of this section is to demonstrate that the thread divergence reduction mechanisms we propose has an impact on the performance of the GPU accelerated B\&B and to evaluate how this impact is significant. 
639 In the following, the reported results are obtained with the GPU-accelerated B\&B based on the parallel evaluation of bounds.
640
641 \begin{table}[!h]
642 \setlength{\tabcolsep}{0.2cm}
643 \renewcommand{\arraystretch}{1.2}
644   \centering
645   \footnotesize
646  \begin{tabular}{|r|r|r|r|r|r|r|r|}
647     \hline
648 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
649     \hline
650     \hline
651 (NJobs $\times$ NMachines)  & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
652     \hline
653     \hline
654 $200 \times $20 & 46.63 & 60.88 & 63.80 & 67.51 & 73.47 & 75.94 & \textbf{77.46}\\
655     \hline
656 $100 \times $20 & 45.35 & 58.49 & 60.15 & 62.75 & 66.49 & 66.64 & \textbf{67.01}\\
657     \hline
658 $50 \times $20 & 44.39 & \textbf{58.30} & 57.72 & 57.68 & 57.37 & 57.01 & 56.42\\
659     \hline
660 $20 \times $20 & 41.71 & \textbf{50.28} & 49.19 & 45.90 & 42.03 & 41.80 & 41.65\\
661     \hline
662     \hline
663 % Total average speedup & 44.52 & 56.99 & 57.72 & 58.46 & 59.84 & 60.35 & 60.64\\
664 %     \hline
665 %     \hline
666   \end{tabular}
667   \caption{Speedups for different instances and pool sizes using thread divergence management.}
668 \label{ch8:ParaDivergence}
669 \end{table}
670
671 Table~\ref{ch8:ParaDivergence} shows the experimental results obtained using the sorting process and the refactoring approach presented in Section \ref{ch8:ThreadDivergence}. Results show that the proposed optimizations emphasize the GPU acceleration reported in Table~\ref{ch8:ParaGPU2} and obtained without thread divergence reduction. For example, for the instances of 200 jobs over 20 machines and a pool size of 262144, the average reported speedup is 77.46 while the average acceleration factor obtained without thread divergence management for the same instances and the same pool size is 71.69 which corresponds to an improvement of 7.68\%. Such considerable but not outstanding improvement is predictable, as claimed in \cite{ch8:Han}, since the factorized part of the branches in the FSP lower bound is very small. 
672
673 \subsection{Data access optimization}
674
675 The objective of the experimental study presented in this section is to find the best mapping of the six data structures of the lower bound LB kernel on the memories of the GPU device. In the following, the reported results are obtained with the GPU-accelerated B\&B based on the parallel evaluation of bounds.
676
677 Table~\ref{ch8:PTM-on-SM} reports the speedups obtained for the first experimented scenario where only the matrix $PTM$ is put on the shared memory. Results show that the speedup grows on average with the growing of the pool size in the same way as in Table~\ref{ch8:ParaDivergence}. For the largest problem instance and pool size, putting the PTM matrix on the shared memory improves the speedups up to ($14\%$) compared to those obtained when $PTM$ is on global memory reaching an acceleration of $\times 90.51$ for the problem instances $200 \times 20$ and a pool size of $262144$ subproblems .  
678
679 \begin{table}
680   \centering
681   \footnotesize
682   \begin{tabular}{|r|r|r|r|r|r|r|r|}
683     \hline
684 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
685     \hline
686     \hline
687 (NJobs $\times$ NMachines)  & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
688     \hline
689     \hline
690 $200 \times $20 & 54.03 & 67.75 & 68.43 & 72.17 & 82.01 & 88.35 & \textbf{90.51}\\
691     \hline
692 $100 \times $20 & 52.92 & 66.57 & 66.25 & 71.21 & 76.63 & 79.76 & \textbf{83.01}\\
693     \hline
694 $50 \times $20 & 49.85 & \textbf{65.68} & 64.40 & 59.91 & 58.57 & 57.36 & 55.09\\
695     \hline
696 $20 \times $20 & 41.94 & \textbf{60.10} & 48.28 & 39.86 & 39.61 & 38.93 & 37.79 \\
697      \hline
698     \hline
699 % Average Speedup& 49.69 & 65.03 & 61.84 & 60.79 & 64.21 & 66.10 & 66.60 \\                                             
700 %     \hline
701 %     \hline
702   \end{tabular}
703  \caption[Speedup for different FSP instances and pool sizes obtained with data access optimization.]{Speedup for different FSP instances and pool sizes obtained with data access optimization. $PTM$ is placed in shared memory and all others are placed in global memory.}
704 \label{ch8:PTM-on-SM}
705 \end{table}
706
707 Table~\ref{ch8:JM-on-SM} reports the behavior of the speedup averaged on the different problem instances (sizes) as a function of the pool size for the scenario where the Johnson's matrix is put on the shared memory. Results show that putting the $JM$ matrix on the shared matrix improves more the performances comparing to the first scenario where $PTM$ is put on the shared memory. Indeed, according to Table~\ref{ch8:tabMemComplex}, matrix $JM$ is accessed more frequently than matrix $PTM$. Putting $JM$ matrix on the shared memory allows accelerations up to $\times 97.83$ for the problem instances $200 \times 20$.
708
709 \begin{table}
710   \centering
711   \footnotesize
712   \begin{tabular}{|r|r|r|r|r|r|r|r|}
713     \hline
714 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
715     \hline
716     \hline
717 (NJobs $\times$ NMachines) & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
718     \hline
719     \hline
720 $200 \times $20 & 63.01 & 79.40 & 81.40 & 84.02 & 93.61 & 96.56 & \textbf{97.83}\\
721     \hline
722 $100 \times $20 & 61.70 & 77.79 & 79.32 & 81.25 & 86.73 & 87.81 & \textbf{88.69}\\
723     \hline
724 $50 \times $20 & 59.79 & \textbf{75.32} & 72.20 & 71.04 & 70.12 & 68.74 & 68.07 \\
725     \hline
726 $20 \times $20 & 49.00 & \textbf{60.25} & 55.50 & 45.88 & 44.47 & 43.11 & 42.82 \\
727      \hline
728     \hline
729 % Average Speedup& 58.37 & 73.19 & 72.11 & 70.55 & 73.73 & 74.06 & 74.35 \\ 
730 %     \hline
731 %     \hline
732   \end{tabular}
733  \caption[Speedup for different FSP instances and pool sizes obtained with data access optimization.]{Speedup for different FSP instances and pool sizes obtained with data access optimization. 
734 $JM$ is placed in shared memory and all others are placed in global memory.}
735 \label{ch8:JM-on-SM}
736 \end{table}             
737
738 Table~\ref{ch8:JM-PTM-on-SM} reports the behavior of the average speedup for the different problem instances (sizes) with $20$ machines for the data placement scenario where both $PTM$ and $JM$ are put on shared memory. According to the underlying Table, the scenarios~(3) ($JM$ together or without $PTM$ in shared memory) is clearly better than the scenarii~(1)and~(2) (respectively $PTM$ in shared memory and $JM$ in shared memory) whatever is the problem instance (size). 
739
740 \begin{table}
741   \centering
742   \footnotesize
743   \begin{tabular}{|r|r|r|r|r|r|r|r|}
744     \hline
745 Pool size & 4096 & 8192 & 16384 & 32768 & 65536 & 131072 & 262144\\
746     \hline
747     \hline
748 (NJobs $\times$ NMachines)  & \multicolumn{7}{|c|}{Average speedup for each group of 10 instances}\\
749     \hline
750     \hline
751 $200 \times $20 & 66.13 & 87.34 & 88.861 & 95.23 & 98.83 & 99.89 & \textbf{100.48}\\
752     \hline
753 $100 \times $20 & 65.85 & 86.33 & 87.60 & 89.18 & 91.41 & 92.02 & \textbf{92.39}\\
754     \hline
755 $50 \times $20 & 64.91 & \textbf{81.50} & 78.02 & 74.16 & 73.83 & 73.25 & 72.71\\
756     \hline
757 $20 \times $20 & 53.64 & \textbf{61.47} & 59.55 & 51.39 & 47.40 & 46.53 & 46.37\\
758      \hline
759     \hline
760 % Average Speedup & 62.63 & 79.16 & 78.51 & 77.49 & 77.87 & 77.92 & 77.99\\
761 %     \hline
762 %     \hline
763   \end{tabular}
764  \caption[Speedup for different FSP instances and pool sizes obtained with data access optimization.]{Speedup for different FSP instances and pool sizes obtained with data access optimization. $PTM$ and $JM$ are placed together in shared memory and all others are placed in global memory.}
765 \label{ch8:JM-PTM-on-SM}
766 \end{table}     
767
768 By carefully analyzing each of the scenarii of data placement on the memory hierarchies of the GPU, the recommendation is to put in the shared memory the Johnson's and the processing time matrices ($JM$ and $PTM$) if they fit in together. Otherwise, the whole or a part of the Johnson's matrix has to be put in priority in the shared memory. The other data structures are mapped to the global memory.
769
770 \section{Conclusion and future work}
771 \label{ch8:Conclusion}
772
773 In this chapter, we have revisited the design of parallel B\&B algorithms on GPU accelerators to allow highly efficient solving of permutation-based COPs. To do so, our contributions consist in: (1) rethinking two approaches for parallel B\&B on top of GPUs, discussing the performances of each and identifying which best suits the GPU accelerators. (2) proposing a new approach for thread/branch divergence reduction through a thorough analysis of the different loops and conditional instructions of the bounding function. (3) defining an optimal mapping of the data structures of the bounding function on the hierarchy of memories provided in the GPU device through a careful analysis of both the data structures (size and access frequency) and the GPU memories (size and access latency). 
774
775 In the first parallel tree-exploration-based B\&B, a set of pending nodes is selected from this list according to their depth and off-loaded to the GPU where each thread builds its own local search tree by applying
776 the branching, bounding and pruning operators to the assigned node. In the GPU-accelerated B\&B based on the parallel evaluation of bounds, the generation of the subproblems (branching, selection and pruning operations) is performed on CPU and the evaluation of their lower bounds (bounding operation) is executed on the GPU device. Pools of subproblems are off-loaded from CPU to GPU to be evaluated by blocks of threads. After evaluation, the lower bounds are returned to the CPU.
777
778 In both considered approaches, our focus is on the GPU-based lower bound's implementation and the associated thread divergence and data placement challenges. The proposed mechanisms for reducing the thread divergence issue are based on a thorough analysis of the different loops and conditional instructions of the lower bound function. On the one hand, the sorting process aims to homogenize the data of the subproblems off-loaded to the GPU to minimize the number of threads that diverge on loop instructions. On the other hand, the technique of branch refactoring rewrite the conditional instructions into uniform instructions so that threads of the same warp execute a same code. The proposed data access optimization is based on a preliminary analysis of the lower bound function. Such analysis allowed us to identify six data structures for which we have proposed a complexity analysis in terms of memory size and access frequency. Due to the limited size of the shared memory the matrices do not fit in all together. According to the complexity study, the recommendation is to put in the shared memory the Johnson's and the processing time matrices ($JM$ and $PTM$) if they fit in together. Otherwise, the whole or a part of the Johnson's matrix has to be put in priority in the shared memory. The other data structures are mapped to the global memory. Such recommendation has been confirmed through extensive experiments using a recent C2050 Tesla GPU card. 
779
780 The Flowshop Scheduling Problem has been considered as a case study. The proposed approaches have been experimented using a Tesla C2050 GPU card on different classes of FSP instances. The experimental results show that the parallel evaluation of bounds is the parallelization paradigm that performs better on top of GPU accelerators. Compared to the parallel tree-exploration model, accelerations up to $\times$5.56 are achieved.
781
782 Experiments show also that the proposed refactoring approach improves the parallel efficiency whatever the FSP instance and the pool size are. However, the improvement was not significant because the factorized part of the branches in the FSP lower bound is very small. The optimizations obtained with the proposed thread reduction mechanisms allowed us to achieve accelerations up to $\times$77.46 compared to a sequential B\&B. The data access optimizations grant accelerations up to $\times 100$ compared to a single CPU-based B\&B.
783
784 In the near future, we plan to extend this work to a cluster of GPU-accelerated multi-core processors. From the application point of view, the objective is to optimally solve challenging and unsolved Flow-Shop instances as we did it for one 50$\times$20 problem instance with grid computing \cite{ch8:Mezmaz_2007}. Finally, we plan to investigate other lower bound functions to deal with other combinatorial optimization problems. 
785
786 \putbib[Chapters/chapter8/biblio8]