]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter5/ch5.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter5 / ch5.tex
index dea460f17d4ae8d05018eee2bf61808898cfd5d3..fed9a80d06f286d930db2ef59c03fa3b22eaf324 100644 (file)
@@ -160,7 +160,7 @@ We refer the reader to Chapter \ref{ch7} for an example of a scientific applicat
 \subsection{Heat conduction equation}\index{heat conduction}
 First, we consider a two-dimensional heat conduction problem defined on a unit square. The heat conduction equation is a parabolic partial differential diffusion equation, including both spatial and temporal derivatives. It describes how the diffusion of heat in a medium changes with time. Diffusion equations are of great importance in many fields of sciences, e.g., fluid dynamics, where the fluid motion is uniquely described by the Navier-Stokes equations, which include a diffusive viscous term~\cite{ch5:chorin1993,ch5:Ferziger1996}.%, or in financial science where diffusive terms are present in the Black-Scholes equations for estimation of option price trends~\cite{}.
 
-The heat problem is an IVP \index{initial value problem}, it describes how the heat distribution evolves from a specified initial state. Together with homogeneous Dirichlet boundary conditions\index{boundary conditions}, the heat problem in the unit square is given as
+The heat problem is an IVP \index{initial value problem}, it describes how the heat distribution evolves from a specified initial state. Together with homogeneous Dirichlet boundary conditions\index{boundary condition}, the heat problem in the unit square is given as
 \begin{subequations}\begin{align}
 \frac{\partial u}{\partial t} - \kappa\nabla^2u =  0, & \qquad (x,y)\in \Omega([0,1]\times[0,1]),\quad t\geq 0, \label{ch5:eq:heateqdt}\\
 u =  0, & \qquad (x,y) \in \partial\Omega,\label{ch5:eq:heateqbc}