]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter5/ch5.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter5 / ch5.tex
index f78057785a08cb6a0a12bc5123e03ecf6675fce7..bdfad6aed804e87a6cd4f6ac19831b4695207566 100644 (file)
@@ -188,7 +188,7 @@ We use a Method of Lines (MoL)\index{method of lines} approach to solve \eqref{c
 \begin{align}\label{ch5:eq:discreteheateq}
 \frac{\partial u}{\partial t} = \mymat{A}\myvec{u}, \qquad \mymat{A} \in \mathbb{R}^{N\times N}, \quad \myvec{u} \in \mathbb{R}^{N},
 \end{align}
 \begin{align}\label{ch5:eq:discreteheateq}
 \frac{\partial u}{\partial t} = \mymat{A}\myvec{u}, \qquad \mymat{A} \in \mathbb{R}^{N\times N}, \quad \myvec{u} \in \mathbb{R}^{N},
 \end{align}
-where $\mymat{A}$ is the sparse finite difference matrix and $N$ is the number of unknowns in the discrete system. The temporal derivative is now free to be approximated by any suitable choice of a time-integration method\index{time integration}. The most simple integration scheme would be the first-order accurate explicit forward Euler method\index{forward Euler},
+where $\mymat{A}$ is the sparse finite difference matrix and $N$ is the number of unknowns in the discrete system. The temporal derivative is now free to be approximated by any suitable choice of a time-integration method\index{time integration}. The most simple integration scheme would be the first-order accurate explicit forward Euler method\index{Euler!forward Euler},
 \begin{align}\label{ch5:eq:forwardeuler}
 \myvec{u}^{n+1} = \myvec{u}^n + \delta t\,\mymat{A}\myvec{u}^n,
 \end{align}
 \begin{align}\label{ch5:eq:forwardeuler}
 \myvec{u}^{n+1} = \myvec{u}^n + \delta t\,\mymat{A}\myvec{u}^n,
 \end{align}