\begin{align}\label{ch5:eq:discreteheateq}
\frac{\partial u}{\partial t} = \mymat{A}\myvec{u}, \qquad \mymat{A} \in \mathbb{R}^{N\times N}, \quad \myvec{u} \in \mathbb{R}^{N},
\end{align}
\begin{align}\label{ch5:eq:discreteheateq}
\frac{\partial u}{\partial t} = \mymat{A}\myvec{u}, \qquad \mymat{A} \in \mathbb{R}^{N\times N}, \quad \myvec{u} \in \mathbb{R}^{N},
\end{align}
-where $\mymat{A}$ is the sparse finite difference matrix and $N$ is the number of unknowns in the discrete system. The temporal derivative is now free to be approximated by any suitable choice of a time-integration method\index{time integration}. The most simple integration scheme would be the first-order accurate explicit forward Euler method\index{forward Euler},
+where $\mymat{A}$ is the sparse finite difference matrix and $N$ is the number of unknowns in the discrete system. The temporal derivative is now free to be approximated by any suitable choice of a time-integration method\index{time integration}. The most simple integration scheme would be the first-order accurate explicit forward Euler method\index{Euler!forward Euler},
\begin{align}\label{ch5:eq:forwardeuler}
\myvec{u}^{n+1} = \myvec{u}^n + \delta t\,\mymat{A}\myvec{u}^n,
\end{align}
\begin{align}\label{ch5:eq:forwardeuler}
\myvec{u}^{n+1} = \myvec{u}^n + \delta t\,\mymat{A}\myvec{u}^n,
\end{align}