]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter18/ch18.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter18 / ch18.tex
index 7c2a3931d7f91c39a8f01f39ecb8d4e59bb1d50b..9e92d3e1965faba93e0b0cd9c275cb890352c8e4 100755 (executable)
@@ -13,14 +13,14 @@ generated by either a deterministic and reproducible algorithm called
 a pseudorandom number generator (PRNG)\index{PRNG}, or by a physical nondeterministic 
 process having all the characteristics of a random noise, called a truly random number
 generator (TRNG). In this chapter, we focus on
-reproducible generators, useful for instance in MonteCarlo-based
+reproducible generators, useful for instance in Monte Carlo-based
 simulators.  These domains need PRNGs that are statistically
 irreproachable.  In some fields such as in numerical simulations,
 speed is a strong requirement that is usually attained by using
 parallel architectures. In that case, a recurrent problem is that a
 deflation of the statistical qualities is often reported, when the
 parallelization of a good PRNG is realized.  This
-is why adhoc PRNGs for each possible architecture must be found to
+is why ad hoc PRNGs for each possible architecture must be found to
 achieve both speed and randomness.  On the other hand, speed is not
 the main requirement in cryptography: the most important point is to
 define \emph{secure} generators able to withstand malicious
@@ -252,7 +252,7 @@ satisfies the Devaney's definition of chaos.
 
 In Listing~\ref{algo:seqCIPRNG} a sequential  version of the proposed PRNG based
 on  chaotic  iterations  is  presented, which extends the generator family 
-formerly presented in~\cite{bgw09:ip,guyeux10}.   The xor  operator  is  represented  by
+formerly presented in~\cite{bgw09:ip,guyeux10}.   The \texttt{xor}  operator  is  represented  by
 \textasciicircum.  This function uses  three classical 64-bit PRNGs, namely the
 \texttt{xorshift},         the          \texttt{xor128},         and         the
 \texttt{xorwow}~\cite{Marsaglia2003}.  In the following, we call them ``xor-like