\relax
-\@writefile{toc}{\author{}{}}
+\@writefile{toc}{\author{Lilia Ziane Khodja}{}}
+\@writefile{toc}{\author{Ming Chau}{}}
+\@writefile{toc}{\author{Rapha\IeC {\"e}l Couturier}{}}
+\@writefile{toc}{\author{Pierre Spit\IeC {\'e}ri}{}}
+\@writefile{toc}{\author{Jacques Bahi}{}}
\@writefile{loa}{\addvspace {10\p@ }}
-\@writefile{toc}{\contentsline {chapter}{\numberline {12}Solving sparse nonlinear systems of obstacle problems on GPU clusters}{277}}
+\@writefile{toc}{\contentsline {chapter}{\numberline {12}Solving sparse nonlinear systems of obstacle problems on GPU clusters}{279}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
-\@writefile{toc}{\contentsline {section}{\numberline {12.1}Introduction}{277}}
-\newlabel{sec:01}{{12.1}{277}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.2}Obstacle problems}{278}}
-\newlabel{sec:02}{{12.2}{278}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {12.2.1}Mathematical model}{278}}
-\newlabel{sec:02.01}{{12.2.1}{278}}
-\newlabel{eq:01}{{12.1}{278}}
-\newlabel{eq:02}{{12.2}{279}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {12.2.2}Discretization}{279}}
-\newlabel{sec:02.02}{{12.2.2}{279}}
-\newlabel{eq:03}{{12.3}{279}}
-\newlabel{eq:04}{{12.4}{279}}
-\newlabel{eq:05}{{12.5}{280}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.3}Parallel iterative method}{280}}
-\newlabel{sec:03}{{12.3}{280}}
-\newlabel{eq:06}{{12.6}{280}}
-\newlabel{eq:07}{{12.7}{280}}
-\newlabel{eq:08}{{12.8}{281}}
-\newlabel{eq:09}{{12.9}{281}}
-\newlabel{eq:10}{{12.10}{281}}
-\newlabel{eq:11}{{12.11}{281}}
-\newlabel{eq:12}{{12.12}{281}}
-\newlabel{eq:13}{{12.13}{282}}
-\newlabel{eq:14}{{12.14}{282}}
-\newlabel{eq:15}{{12.15}{282}}
-\newlabel{eq:16}{{12.16}{282}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.4}Parallel implementation on a GPU cluster}{283}}
-\newlabel{sec:04}{{12.4}{283}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.1}{\ignorespaces Data partitioning of a problem to be solved among $S=3\times 4$ computing nodes.\relax }}{283}}
-\newlabel{fig:01}{{12.1}{283}}
-\@writefile{loa}{\contentsline {algocf}{\numberline {11}{\ignorespaces Parallel solving of the obstacle problem on a GPU cluster\relax }}{284}}
-\newlabel{alg:01}{{11}{284}}
-\newlabel{eq:18}{{12.17}{284}}
-\@writefile{loa}{\contentsline {algocf}{\numberline {12}{\ignorespaces Parallel iterative solving of the nonlinear systems on a GPU cluster ($Solve()$ function)\relax }}{285}}
-\newlabel{alg:02}{{12}{285}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.2}{\ignorespaces Decomposition of a sub-problem in a GPU into $nz$ slices.\relax }}{286}}
-\newlabel{fig:02}{{12.2}{286}}
-\newlabel{list:01}{{12.1}{286}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.1}Skeleton codes of a GPU kernel and a CPU function}{286}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.3}{\ignorespaces Matrix constant coefficients in a three-dimensional domain.\relax }}{288}}
-\newlabel{fig:03}{{12.3}{288}}
-\newlabel{eq:17}{{12.18}{288}}
-\newlabel{list:02}{{12.2}{289}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.2}GPU kernels of the projected Richardson method}{289}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.4}{\ignorespaces Computation of a vector element with the projected Richardson method.\relax }}{290}}
-\newlabel{fig:04}{{12.4}{290}}
-\newlabel{list:03}{{12.3}{290}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.3}Memory access to the cache texture memory}{290}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.5}Experimental tests on a GPU cluster}{291}}
-\newlabel{sec:05}{{12.5}{291}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.5}{\ignorespaces GPU cluster of tests composed of 12 computing nodes (six machines, each with two GPUs.\relax }}{292}}
-\newlabel{fig:05}{{12.5}{292}}
-\@writefile{lot}{\contentsline {table}{\numberline {12.1}{\ignorespaces Execution times in seconds of the parallel projected Richardson method implemented on a cluster of 24 CPU cores.\relax }}{293}}
-\newlabel{tab:01}{{12.1}{293}}
-\@writefile{lot}{\contentsline {table}{\numberline {12.2}{\ignorespaces Execution times in seconds of the parallel projected Richardson method implemented on a cluster of 12 GPUs.\relax }}{293}}
-\newlabel{tab:02}{{12.2}{293}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.6}Red-Black ordering technique}{294}}
-\newlabel{sec:06}{{12.6}{294}}
-\newlabel{fig:06.01}{{12.6(a)}{295}}
-\newlabel{sub@fig:06.01}{{(a)}{295}}
-\newlabel{fig:06.02}{{12.6(b)}{295}}
-\newlabel{sub@fig:06.02}{{(b)}{295}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.6}{\ignorespaces Red-black ordering for computing the iterate vector elements in a three-dimensional space.\relax }}{295}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Red-black ordering on x, y and z axises}}}{295}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Red-black ordering on y axis}}}{295}}
-\newlabel{list:04}{{12.4}{296}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.4}GPU kernels of the projected Richardson method using the red-black technique}{296}}
-\@writefile{lot}{\contentsline {table}{\numberline {12.3}{\ignorespaces Execution times in seconds of the parallel projected Richardson method using read-black ordering technique implemented on a cluster of 12 GPUs.\relax }}{297}}
-\newlabel{tab:03}{{12.3}{297}}
-\@writefile{lof}{\contentsline {figure}{\numberline {12.7}{\ignorespaces Weak scaling of both synchronous and asynchronous algorithms of the projected Richardson method using red-black ordering technique.\relax }}{298}}
-\newlabel{fig:07}{{12.7}{298}}
-\@writefile{toc}{\contentsline {section}{\numberline {12.7}Conclusion}{299}}
-\newlabel{sec:07}{{12.7}{299}}
-\@writefile{toc}{\contentsline {section}{Bibliography}{299}}
+\newlabel{ch13}{{12}{279}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.1}Introduction}{279}}
+\newlabel{ch13:sec:01}{{12.1}{279}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.2}Obstacle problems}{280}}
+\newlabel{ch13:sec:02}{{12.2}{280}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {12.2.1}Mathematical model}{280}}
+\newlabel{ch13:sec:02.01}{{12.2.1}{280}}
+\newlabel{ch13:eq:01}{{12.1}{280}}
+\newlabel{ch13:eq:02}{{12.2}{280}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {12.2.2}Discretization}{281}}
+\newlabel{ch13:sec:02.02}{{12.2.2}{281}}
+\newlabel{ch13:eq:03}{{12.3}{281}}
+\newlabel{ch13:eq:04}{{12.4}{281}}
+\newlabel{ch13:eq:05}{{12.5}{281}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.3}Parallel iterative method}{282}}
+\newlabel{ch13:sec:03}{{12.3}{282}}
+\newlabel{ch13:eq:06}{{12.6}{282}}
+\newlabel{ch13:eq:07}{{12.7}{282}}
+\newlabel{ch13:eq:08}{{12.8}{282}}
+\newlabel{ch13:eq:09}{{12.9}{282}}
+\newlabel{ch13:eq:10}{{12.10}{283}}
+\newlabel{ch13:eq:11}{{12.11}{283}}
+\newlabel{ch13:eq:12}{{12.12}{283}}
+\newlabel{ch13:eq:13}{{12.13}{284}}
+\newlabel{ch13:eq:14}{{12.14}{284}}
+\newlabel{ch13:eq:15}{{12.15}{284}}
+\newlabel{ch13:eq:16}{{12.16}{284}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.4}Parallel implementation on a GPU cluster}{285}}
+\newlabel{ch13:sec:04}{{12.4}{285}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.1}{\ignorespaces Data partitioning of a problem to be solved among $S=3\times 4$ computing nodes.\relax }}{285}}
+\newlabel{ch13:fig:01}{{12.1}{285}}
+\@writefile{loa}{\contentsline {algocf}{\numberline {11}{\ignorespaces Parallel solving of the obstacle problem on a GPU cluster\relax }}{286}}
+\newlabel{ch13:alg:01}{{11}{286}}
+\newlabel{ch13:eq:18}{{12.17}{286}}
+\@writefile{loa}{\contentsline {algocf}{\numberline {12}{\ignorespaces Parallel iterative solving of the nonlinear systems on a GPU cluster ($Solve()$ function)\relax }}{287}}
+\newlabel{ch13:alg:02}{{12}{287}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.2}{\ignorespaces Decomposition of a sub-problem in a GPU into $nz$ slices.\relax }}{288}}
+\newlabel{ch13:fig:02}{{12.2}{288}}
+\newlabel{ch13:list:01}{{12.1}{288}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.1}Skeleton codes of a GPU kernel and a CPU function}{288}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.3}{\ignorespaces Matrix constant coefficients in a three-dimensional domain.\relax }}{290}}
+\newlabel{ch13:fig:03}{{12.3}{290}}
+\newlabel{ch13:eq:17}{{12.18}{290}}
+\newlabel{ch13:list:02}{{12.2}{290}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.2}GPU kernels of the projected Richardson method}{290}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.4}{\ignorespaces Computation of a vector element with the projected Richardson method.\relax }}{292}}
+\newlabel{ch13:fig:04}{{12.4}{292}}
+\newlabel{ch13:list:03}{{12.3}{292}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.3}Memory access to the cache texture memory}{292}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.5}Experimental tests on a GPU cluster}{293}}
+\newlabel{ch13:sec:05}{{12.5}{293}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.5}{\ignorespaces GPU cluster of tests composed of 12 computing nodes (six machines, each with two GPUs.\relax }}{295}}
+\newlabel{ch13:fig:05}{{12.5}{295}}
+\@writefile{lot}{\contentsline {table}{\numberline {12.1}{\ignorespaces Execution times in seconds of the parallel projected Richardson method implemented on a cluster of 24 CPU cores.\relax }}{295}}
+\newlabel{ch13:tab:01}{{12.1}{295}}
+\@writefile{lot}{\contentsline {table}{\numberline {12.2}{\ignorespaces Execution times in seconds of the parallel projected Richardson method implemented on a cluster of 12 GPUs.\relax }}{296}}
+\newlabel{ch13:tab:02}{{12.2}{296}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.6}Red-Black ordering technique}{296}}
+\newlabel{ch13:sec:06}{{12.6}{296}}
+\newlabel{ch13:list:04}{{12.4}{297}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {12.4}GPU kernels of the projected Richardson method using the red-black technique}{297}}
+\newlabel{ch13:fig:06.01}{{12.6(a)}{298}}
+\newlabel{sub@ch13:fig:06.01}{{(a)}{298}}
+\newlabel{ch13:fig:06.02}{{12.6(b)}{298}}
+\newlabel{sub@ch13:fig:06.02}{{(b)}{298}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.6}{\ignorespaces Red-Black ordering for computing the iterate vector elements in a three-dimensional space.\relax }}{298}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Red-Black ordering on x, y and z axises}}}{298}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Red-Black ordering on y axis}}}{298}}
+\@writefile{lot}{\contentsline {table}{\numberline {12.3}{\ignorespaces Execution times in seconds of the parallel projected Richardson method using read-black ordering technique implemented on a cluster of 12 GPUs.\relax }}{299}}
+\newlabel{ch13:tab:03}{{12.3}{299}}
+\@writefile{lof}{\contentsline {figure}{\numberline {12.7}{\ignorespaces Weak scaling of both synchronous and asynchronous algorithms of the projected Richardson method using red-black ordering technique.\relax }}{300}}
+\newlabel{ch13:fig:07}{{12.7}{300}}
+\@writefile{toc}{\contentsline {section}{\numberline {12.7}Conclusion}{300}}
+\newlabel{ch13:sec:07}{{12.7}{300}}
+\@writefile{toc}{\contentsline {section}{Bibliography}{301}}
\@setckpt{Chapters/chapter13/ch13}{
-\setcounter{page}{301}
+\setcounter{page}{303}
\setcounter{equation}{18}
\setcounter{enumi}{4}
\setcounter{enumii}{0}
\setcounter{enumiv}{15}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
-\setcounter{part}{1}
+\setcounter{part}{5}
\setcounter{chapter}{12}
\setcounter{section}{7}
\setcounter{subsection}{0}