\begin{figure}[h]
\centering
\includegraphics[angle=0,width=8cm]{Chapters/chapter11/gregory1_plot1.pdf}
-\caption{Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data from \cite{Gregory1982}. Cubic spline fails to preserve monotonicity of the data.}
+\caption[Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data]{Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data from \cite{Gregory1982}. Cubic spline fails to preserve monotonicity of the data.}
\label{ch11:fig1}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[angle=00,width=8cm]{Chapters/chapter11/gregory1_plot2_b.pdf}
-\caption{Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data from \cite{Gregory1982} with non-negative prescribed slopes. Despite non-negative slopes, Hermite cubic spline is not monotone.}
+\caption[Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data]{Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data from \cite{Gregory1982} with non-negative prescribed slopes. Despite non-negative slopes, Hermite cubic spline is not monotone.}
\label{ch11:fig2}
\end{figure}
\section{Conclusion} \label{ch11:conc}
We presented three GPU-based parallel algorithms for approximating monotone data: monotone quadratic spline, monotone Hermite rational spline and minimum lower sets algorithm for monotonizing noisy data. These tools are valuable in a number of applications that involve large data sets modeled by monotone nonlinear functions.
-The source code of the package monospline is available from \texttt{www.deakin.edu.au/$\sim$ gleb/monospline.html }
+The source code of the package monospline is available from \texttt{www.deakin.edu.au/$\sim$gleb/monospline.html }
\putbib[Chapters/chapter11/biblio11]