]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter8/ch8.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ch1
[book_gpu.git] / BookGPU / Chapters / chapter8 / ch8.tex
index 24a71bc7a17fe59e0c2b48a0be7af3a02cfdaf95..5d012eb5ec2b5c8047b425b9f43a46de1f0bb72e 100644 (file)
@@ -1,6 +1,6 @@
 
 
-\chapterauthor{Imen Chakroun}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\}
-\chapterauthor{Nouredine Melab}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\}
+\chapterauthor{Imen Chakroun and Nouredine Melab}{University of Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique, 59655 Villeneuve d'Ascq cedex, France\\}
+%\chapterauthor{Nouredine Melab}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\}
 
 \chapter{GPU-accelerated Tree-based Exact Optimization Methods}
 \label{ch8:GPU-accelerated-tree-based-exact-optimization-methods}
 
 \chapter{GPU-accelerated Tree-based Exact Optimization Methods}
 \label{ch8:GPU-accelerated-tree-based-exact-optimization-methods}
@@ -254,11 +254,12 @@ In the following, we present how we dealt with the thread/branch divergence issu
 
 \vspace{-0.4cm}
 
 
 \vspace{-0.4cm}
 
-\section{Thread divergence \index{Thread divergence}}
+\section{Thread divergence}
+\label{ch8:ThreadDivergence}
 
 \subsection{The thread divergence issue}
 
 
 \subsection{The thread divergence issue}
 
-During the execution of an application on GPU, to each GPU multiprocessor is assigned one or more thread block(s) to execute. Those threads are partitioned into warps that get scheduled for execution. For each  instruction of the flow, the multiprocessor selects a warp that is ready to be run. A warp executes one common instruction at a time, so full efficiency is realized when all threads of a warp agree on their execution path. In this chapter, the G80 model, in which a warp is a pool of 32 threads, is used. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken. Threads that are not on the taken path are disabled, and when all paths complete, the threads converge back to the same execution path. This phenomenon is called thread/branch divergence and often causes serious performance degradations. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjointed code paths.
+During the execution of an application on GPU, to each GPU multiprocessor is assigned one or more thread block(s) to execute. Those threads are partitioned into warps that get scheduled for execution. For each  instruction of the flow, the multiprocessor selects a warp that is ready to be run. A warp executes one common instruction at a time, so full efficiency is realized when all threads of a warp agree on their execution path. In this chapter, the G80 model, in which a warp is a pool of 32 threads, is used. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken. Threads that are not on the taken path are disabled, and when all paths complete, the threads converge back to the same execution path. This phenomenon is called thread/branch divergence\index{Thread divergence} and often causes serious performance degradations. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjointed code paths.
 
 \vspace{0.2cm}
 
 
 \vspace{0.2cm}