-We have performed a scalability study for parareal using 2D nonlinear stream function waves based on a discretization with $(N_x,N_z)=(33,9)$ collocation points, cf. figure \ref{ch7:fig:DDPA_SPEEDUP}. The study shows that moderate speedup are possible for this hyperbolic system. Using four GPU nodes a speedup of slightly more than two was achieved while using sixteen GPU nodes resulted in a speedup of slightly less than five. As noticed in figure \ref{ch7:fig:DDPA_SPEEDUP}, parallel efficiency decrease quite fast when using more GPUs. This limitation is due to the usage a fairly slow and accurate coarse propagator and linked to a known difficulty with parareal applied to hyperbolic systems. For hyperbolic systems, instabilities tend to arise when using a very inaccurate coarse propagator. This prevents using a large number of time sub-domains, as this by Amdahl's law also requires a very fast coarse propagator. The numbers are still impressive though, considering that it comes as additional speedup to an already efficient and fast code.
-Performance results for the Whalin test case have also been reported in figure \ref{ch7:fig:whalinparareal}. There is a natural limitation to how much we can increase $R$ (the ratio between the complexity of the fine and coarse propagators), because of stability issues with the coarse propagator. In this test case we simulate from $t=[0,1]s$, using up to $32$ GPUs. For low $R$ and only two GPUs, there is no speedup gain, but for configuration with eight or more GPUs and $R\geq6$, we are able to get more than $2$ times speedup. Though these hyperbolic systems are not optimal for performance tuning using the parareal method, results still confirm that reasonable speedups are in fact possible on heterogenous systems.
+We have performed a scalability study for parareal using 2D nonlinear stream function waves based on a discretization with $(N_x,N_z)=(33,9)$ collocation points, cf. Figure \ref{ch7:fig:DDPA_SPEEDUP}. The study shows that moderate speedup is possible for this hyperbolic system. Using four GPU nodes, a speedup of slightly more than two was achieved while using sixteen GPU nodes resulted in a speedup of slightly less than five. As noticed in Figure \ref{ch7:fig:DDPA_SPEEDUP}, parallel efficiency decreases quite fast when using more GPUs. This limitation is due to the usages of a fairly slow and accurate coarse propagator and is linked to a known difficulty with parareal applied to hyperbolic systems. For hyperbolic systems, instabilities tend to arise when using a very inaccurate coarse propagator. This prevents using a large number of time subdomains, as this by Amdahl's law also requires a very fast coarse propagator. The numbers are still impressive though, considering that the speedup due to parareal comes as additional speedup to an already efficient and fast code.
+Performance results for the Whalin test case are also shown in Figure \ref{ch7:fig:whalinparareal}. There is a natural limitation to how much we can increase $R$ (the ratio between the complexity of the fine and coarse propagators), because of stability issues with the coarse propagator. In this test case we simulate from $t=[0,1]$s, using up to $32$ GPUs. For low $R$ and only two GPUs, there is no speedup gain, but for the configuration with eight or more GPUs and $R\geq6$, we are able to get more than $2$ times speedup. Though these hyperbolic systems are not optimal for performance tuning using the parareal method, results still confirm that reasonable speedups are in fact possible on heterogenous systems.