]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter3/ch3.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter3 / ch3.tex
index 1a991e2623d26b7bc5ae70688fd204183814e75b..8cd1767cb12b39dd3edebf49319d4b7bdfe0af26 100755 (executable)
@@ -1,4 +1,4 @@
-\chapterauthor{Gilles Perrot}{FEMTO-ST Institute}
+\chapterauthor{Gilles Perrot}{Femto-ST Institute, University of Franche-Comte, France}
 %\graphicspath{{img/}}
 
 
@@ -181,8 +181,9 @@ Last, like many authors, we chose to use the pixel throughput value of each proc
 In order to estimate the potential for improvement of each kernel, a reference throughput measurement, involving identity kernel of Listing \ref{lst:fkern1}, was performed. As this kernel only fetches input values from texture memory and outputs them to global memory without doing any computation, it represents the smallest, thus fastest, possible process and is taken as the reference throughput value (100\%). The same measurement was performed on CPU, with a maximum effective pixel throughput of 130~Mpixel per second. On GPU, depending on grid parameters it amounts to 800~MPixels/s on GTX280 and 1300~Mpixels/s on C2070.
 
 
+\chapterauthor{Gilles Perrot}{Femto-ST Institute, University of Franche-Comte, France}
+
 \chapter{Implementing a fast median filter}
-\chapterauthor{Gilles Perrot}{FEMTO-ST Institute}
 \section{Introduction}
 Median filtering is a well-known method used in a wide range of application frameworks as well as a standalone filter especially for \textit{salt and pepper} denoising. It is able to highly reduce power of noise without blurring edges too much.