\underline{G}eneralized \underline{M}inimum \underline{Res}idual,
or GMRES method is an iterative method for solving
systems of linear equations ($A x=b$) with dense matrix $A$.
-The standard GMRES\index{GMRES} is given in Algorithm~\ref{alg:GMRES}.
-It constructs a Krylov subspace\index{Krylov subspace} with order $m$,
+The standard GMRES\index{iterative method!GMRES} is given in Algorithm~\ref{alg:GMRES}.
+It constructs a Krylov subspace\index{iterative method!Krylov subspace} with order $m$,
\[ \mathcal{K}_m = \mathrm{span}( b, A^{} b, A^2 b,\ldots, A^{m-1} b ),\]
where the approximate solution $x_m$ resides.
In practice, an orthonormal basis $V_m$ that spans the
subspace $\mathcal{K}_{m}$ can be generated by
-the Arnoldi iteration\index{Arnoldi iterations}.
+the Arnoldi iterations\index{iterative method!Arnoldi iterations}.
The goal of GMRES is to search for an optimal coefficient $y$
such that the linear combination $x_m = V_m y$ will minimize
its residual $\| b-Ax_m \|_2$.
%% \end{algorithmic}
%% \end{algorithm}
+\begin{algorithm}
+\caption{Standard GMRES\index{iterative method!GMRES} algorithm.} \label{alg:GMRES}
+ \KwIn{ $ A \in \mathbb{R}^{N \times N}$, $b \in \mathbb{R}^N$,
+ and initial guess $x_0 \in \mathbb{R}^N$}
+ \KwOut{ $x \in \mathbb{R}^N$: $\| b - A x\|_2 < tol$}
+
+ $r = b - A x_0$\;
+ $h_{1,0}=\left \| r \right \|_2$\;
+ $m=0$\;
+
+ \While{$m < max\_iter$} {
+ $m = m+1$;
+ $v_{m} = r / h_{m,m-1}$\;
+ \label{line:mvp} $r = A v_m$\;
+ \For{$i = 1\ldots m$} {
+ $h_{i,m} = \langle v_i, r \rangle$\;
+ $r = r - h_{i,m} v_i$\;
+ }
+ $h_{m+1,m} = \left\| r \right\|_2$\label{line:newnorm} \;
+ %\STATE Generate Givens rotations to triangularize $\tilde{H}_m$
+ %\STATE Apply Givens rotations on $h_{1,0}e_1$ to get residual $\epsilon$
+ Compute the residual $\epsilon$\;
+ \If{$\epsilon < tol$} {
+ Solve the problem: minimize $\|b-Ax_m\|_2$\;
+ Return $x_m = x_0 + V_m y_m$\;
+ }
+ }
+\end{algorithm}
+
+
At a first glance, the cost of using standard GMRES directly to
solve the Newton update in Eq.~\eqref{eq:Newton}
seems to come mainly from two parts: the
At each time step, SPICE\index{SPICE} has
to linearize device models, stamp matrix elements
into MNA (short for modified nodal analysis\index{modified nodal analysis, or MNA}) matrices,
-and solve circuit equations in its inner Newton iteration\index{Newton iteration}.
+and solve circuit equations in its inner Newton iteration\index{iterative method!Newton iteration}.
When convergence is attained,
circuit states are saved and then next time step begins.
This is also the time when we store the needed matrices