u(x,y,t_0) = \sin(\pi x)\,\sin(\pi y), & \qquad (x,y) \in \Omega.
\end{align}
An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition is given in Figure \ref{ch5:fig:heatsolution}.
-\begin{figure}[!htb]
+\begin{figure}[!htbp]
\begin{center}
\setlength\figurewidth{0.3\textwidth} %
- \setlength\figureheight{0.32\textwidth} %
- \subfigure[$t=0.00s$]{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
- \subfigure[$t=0.05s$]{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
+ \setlength\figureheight{0.3\textwidth} %
+ \subfigure[$t=0.00s$]%{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
+ \subfigure[$t=0.05s$]%{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
%\subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
\end{center}
\caption{Discrete solution at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution}
\end{figure}
\setlength\figurewidth{0.4\textwidth}
\begin{center}
{\small
-\input{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216.tikz}
+%\input{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216.tikz}
+{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216_conv.pdf}}
}
\end{center}
\caption{Single and double precision floating point operations per second for a two dimensional stencil operator on a numerical grid of size $4096^2$. Various stencil sizes are used $\alpha=1,2,3,4$, equivalent to $5$pt, $9$pt, $13$pt, and $17$pt stencils. Test environment 1.}\label{ch5:fig:stencilperformance}
\setlength\figurewidth{0.33\textwidth}
\begin{center}
\subfigure[Convergence history for the conjugate gradient and multigrid methods, for two different problem sizes.]{\label{ch5:fig:poissonconvergence:a}
- {\scriptsize \input{Chapters/chapter5/figures/ConvergenceMGvsCG.tikz}}
-} \hspace{0.2cm}%
+ %{\scriptsize \input{Chapters/chapter5/figures/ConvergenceMGvsCG.tikz}}
+ {\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/ConvergenceMGvsCG_conv.pdf}}
+}
+
+ \hspace{0.2cm}%
\subfigure[Defect correction convergence history for three different stencil sizes.]{\label{ch5:fig:poissonconvergence:b}
- {\scriptsize \input{Chapters/chapter5/figures/ConvergenceDC.tikz}}
+ %{\scriptsize \input{Chapters/chapter5/figures/ConvergenceDC.tikz}}
+ {\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/ConvergenceDC_conv.pdf}}
}
\end{center}
\caption{Algorithmic performance for the conjugate gradient, multigrid, and defect correction methods, measured in terms of the relative residual per iteration.}\label{ch5:fig:poissonconvergence}
\setlength\figurewidth{0.55\textwidth}
\begin{center}
\subfigure[Absolute timings, $\alpha=3$.]{
- {\small\input{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050.tikz}}
+ %{\small\input{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050.tikz}}
+ {\includegraphics[width=0.6\textwidth]{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050_conv.pdf}}
\label{ch5:fig:multigpu:a}
}
\subfigure[Performance at $N=4069^2$, single precision.]{
- {\small\input{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216.tikz}}
+ % {\small\input{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216.tikz}}
+{\includegraphics[width=0.6\textwidth]{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216_conv.pdf}}
\label{ch5:fig:multigpu:b}
}
\end{center}
\putbib[Chapters/chapter5/biblio5]
% Reset lst label and caption
-\lstset{label=,caption=}
\ No newline at end of file
+\lstset{label=,caption=}