]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter5/ch5.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correct ch 10
[book_gpu.git] / BookGPU / Chapters / chapter5 / ch5.tex
index cbf81f3246d5fb362ecb022d428596b511ddb37b..1d3d9576a6f27dff166f8d628ad45b99a3e741be 100644 (file)
@@ -174,13 +174,16 @@ where $u(x,y,t)$ is the unknown heat distribution, $\kappa$ is a heat conductivi
 u(x,y,t_0) = \sin(\pi x)\,\sin(\pi y), & \qquad (x,y) \in \Omega.
 \end{align}
 An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition is given in Figure \ref{ch5:fig:heatsolution}.
-\begin{figure}[!htb]
+\begin{figure}[!htbp]
     \begin{center}
     \setlength\figurewidth{0.3\textwidth}        %
-    \setlength\figureheight{0.32\textwidth}       %
-    \subfigure[$t=0.00s$]{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
-    \subfigure[$t=0.05s$]{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
+    \setlength\figureheight{0.3\textwidth}       %
+    \subfigure[$t=0.00s$]%{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
+    \subfigure[$t=0.05s$]%{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
     %\subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
     \end{center}
     \caption{Discrete solution at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution}
 \end{figure}
@@ -263,7 +266,8 @@ Solution times for the heat conduction problem is in itself not very interesting
 \setlength\figurewidth{0.4\textwidth}
 \begin{center}
 {\small
-\input{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216.tikz}
+%\input{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216.tikz}
+{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/AlphaPerformanceGTX590_N16777216_conv.pdf}}
 }
 \end{center}
 \caption{Single and double precision floating point operations per second for a two dimensional stencil operator on a numerical grid of size $4096^2$. Various stencil sizes are used $\alpha=1,2,3,4$, equivalent to $5$pt, $9$pt, $13$pt, and $17$pt stencils. Test environment 1.}\label{ch5:fig:stencilperformance}
@@ -386,10 +390,14 @@ Defect correction in combination with multigrid preconditioning, enables efficie
 \setlength\figurewidth{0.33\textwidth}
 \begin{center}
 \subfigure[Convergence history for the conjugate gradient and multigrid methods, for two different problem sizes.]{\label{ch5:fig:poissonconvergence:a}
-    {\scriptsize \input{Chapters/chapter5/figures/ConvergenceMGvsCG.tikz}}
-} \hspace{0.2cm}%
+    %{\scriptsize \input{Chapters/chapter5/figures/ConvergenceMGvsCG.tikz}}
+    {\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/ConvergenceMGvsCG_conv.pdf}}
+}
+
+ \hspace{0.2cm}%
 \subfigure[Defect correction convergence history for three different stencil sizes.]{\label{ch5:fig:poissonconvergence:b}
-    {\scriptsize \input{Chapters/chapter5/figures/ConvergenceDC.tikz}}
+    %{\scriptsize \input{Chapters/chapter5/figures/ConvergenceDC.tikz}}
+ {\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/ConvergenceDC_conv.pdf}}
 }
 \end{center}
 \caption{Algorithmic performance for the conjugate gradient, multigrid, and defect correction methods, measured in terms of the relative residual per iteration.}\label{ch5:fig:poissonconvergence}
@@ -449,11 +457,13 @@ Distributed performance for the finite difference stencil operation is illustrat
     \setlength\figurewidth{0.55\textwidth}
     \begin{center}
     \subfigure[Absolute timings, $\alpha=3$.]{
-    {\small\input{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050.tikz}}
+    %{\small\input{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050.tikz}}
+    {\includegraphics[width=0.6\textwidth]{Chapters/chapter5/figures/MultiGPUAlpha3TimingsTeslaM2050_conv.pdf}}
     \label{ch5:fig:multigpu:a}
     }
     \subfigure[Performance at $N=4069^2$, single precision.]{
-    {\small\input{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216.tikz}}
+   % {\small\input{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216.tikz}}
+{\includegraphics[width=0.6\textwidth]{Chapters/chapter5/figures/MultiGPUAlphaPerformanceTeslaM2050_N16777216_conv.pdf}}
     \label{ch5:fig:multigpu:b}
     }
     \end{center}
@@ -623,4 +633,4 @@ from the Danish Research Council for Technology and Production Sciences. A speci
 \putbib[Chapters/chapter5/biblio5]
 
 % Reset lst label and caption
-\lstset{label=,caption=} 
\ No newline at end of file
+\lstset{label=,caption=}