For the unified potential flow model the user will need to provide implementations of the following components; the right hand side operator for the semi-discrete free surface variables \eqref{ch7:FSorigin}, the matrix-vector operator for the discretized $\sigma$-transformed Laplace equation \eqref{ch7:TransformedLaplace}, a smoother for the multigrid relaxation step, and the potential flow solver itself, that reads initial data and advance the solution in time. In order to make the library as generic as possible, all components are template-based, which makes it possible to assemble the PDE solver by combining type definitions in the preamble of the application. An excerpt of the potential flow assembling is given in listing \ref{ch7:lst:solversetup}.
For the unified potential flow model the user will need to provide implementations of the following components; the right hand side operator for the semi-discrete free surface variables \eqref{ch7:FSorigin}, the matrix-vector operator for the discretized $\sigma$-transformed Laplace equation \eqref{ch7:TransformedLaplace}, a smoother for the multigrid relaxation step, and the potential flow solver itself, that reads initial data and advance the solution in time. In order to make the library as generic as possible, all components are template-based, which makes it possible to assemble the PDE solver by combining type definitions in the preamble of the application. An excerpt of the potential flow assembling is given in listing \ref{ch7:lst:solversetup}.