+We compare the SCOO format to the CSR, COO, and HYB format of Cusp 0.3.0. Other Cusp formats are not able to run on the large tested matrices that we selected. The results are shown in Figure \ref{fig:scoo-vs-gpu}. The performances are in terms of Gflop/s which is based on the assumption of two flops per nonzero entry of the matrix \cite{ch19:nvidia-spmv, ch19:bellpack}.
+
+
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[height=5cm]{Chapters/chapter19/fig/scoo-a.pdf}
+\caption{Performance comparison of SCOO and other GPU formats for each test matrix on a Fermi Tesla C2075 (ECC disabled).}
+\label{fig:scoo-vs-gpu}
+\end{figure}
+
+
+
+The SCOO format achieves a stable performance for different matrices in single-precision mode. In most cases a performance of over 10 Gflop/s can be sustained. For some highly unstructured matrices such as \emph{GL7d19}, \emph{wikipedia-20070206}, \emph{rgg\_n\_2\_24\_s0}, and \emph{kron\_g500-logn21}, SCOO achieves high speedups ranging from 3 to 6 compared to the best performaning Cusp format.
+
+For most matrices, HYB produces the best performance among the tested Cusp formats. HYB is able to outperform SCOO for only two matrices: \emph{nlpkkt120} and \emph{nlpkkt160}. Both matrices have a similar structure, i.e., they consist of consecutive rows that have a very similar number of nonzero coefficients which are suitable to be stored in the ELL section of the HYB format. Moreover the nonzeros are close to each other facilitating coaleasing and cache-friendly access patterns by nature. SCOO is able to outperform COO and CSR for all tested matrices.
+
+In matrix $Relat9$ we observe some patterns but the matrix is still generally unstructured, thus SCOO is able to achieve about 2 times speed up compared to HYB which is the best among tested Cusp formats in this case. The average speedup of SCOO for the tested matrices is 3.0 compared to CSR, 5.02 compared to COO, 2.15 compared to HYB.
+
+We show the visualization of sparse matrices \emph{nlpkkt120}, \emph{relat9}, \emph{GL7d19} in Figure \ref{fig:mat-str}, \ref{fig:mat-mid}, \ref{fig:mat-unstr} using MatView \cite{ch19:matview}. The white color represents zero entries, gray color represents nonzero entries.
+
+\begin{figure}[htbp]