]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter2/ch2.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
quelques modifs
[book_gpu.git] / BookGPU / Chapters / chapter2 / ch2.tex
index ae0704b99da0385b8e934d872795f131b465290c..8222660b03fb33730f512cf2c4c726539ab24fdb 100755 (executable)
@@ -1,88 +1,99 @@
 \chapterauthor{Raphaël Couturier}{Femto-ST Institute, University of Franche-Comte}
 
-\chapter{Introduction to CUDA}
+\chapter{Introduction to Cuda}
 \label{chapter2}
 
-\section{Introduction}\label{intro}
-In this chapter  we give some simple examples on CUDA  programming.  The goal is
-not to provide an exhaustive presentation of all the functionalities of CUDA but
-rather giving some basic elements. Of  course, readers that do not know CUDA are
-invited  to read  other  books that  are  specialized on  CUDA programming  (for
+\section{Introduction}
+\label{ch2:intro}
+
+In this chapter  we give some simple examples on Cuda  programming.  The goal is
+not to provide an exhaustive presentation of all the functionalities of Cuda but
+rather giving some basic elements. Of  course, readers that do not know Cuda are
+invited  to read  other  books that  are  specialized on  Cuda programming  (for
 example: \cite{ch2:Sanders:2010:CEI}).
 
 
 \section{First example}
+\label{ch2:1ex}
 
 This first example is  intented to show how to build a  very simple example with
-CUDA.   The goal  of this  example is  to performed  the sum  of two  arrays and
-putting the  result into a  third array.   A cuda program  consists in a  C code
-which calls CUDA kernels that are executed on a GPU. The listing of this code is
+Cuda.   The goal  of this  example is  to perform  the sum  of two  arrays and
+put the  result into a  third array.   A Cuda program  consists in a  C code
+which calls Cuda kernels that are executed on a GPU. The listing of this code is
 in Listing~\ref{ch2:lst:ex1}.
 
 
 As GPUs have  their own memory, the first step consists  in allocating memory on
-the GPU. A call to \texttt{cudaMalloc} allows to allocate memory on the GPU. The
-first  parameter of  this  function  is a  pointer  on a  memory  on the  device
-(i.e. the GPU). In this example, \texttt{d\_} is added on each variable allocated
-on the GPU meaning this variable  is on the GPU. The second parameter represents
-the size of the allocated variables, this size is in bits.
+the GPU.  A call to  \texttt{cudaMalloc}\index{Cuda~functions!cudaMalloc} allows
+to allocate memory on the GPU. The first parameter of this function is a pointer
+on a memory on the device (i.e. the GPU). In this example, \texttt{d\_} is added
+on each variable allocated  on the GPU, meaning this variable is  on the GPU. The
+second parameter represents the size of the allocated variables, this size is in
+bits.
 
 In this example, we  want to compare the execution time of  the additions of two
 arrays in  CPU and  GPU. So  for both these  operations, a  timer is  created to
-measure the  time. CUDA proposes to  manipulate timers quick  easily.  The first
-step is  to create the timer, then  to start it and  at the end to  stop it. For
-each of these operations a dedicated functions is used.
+measure the  time. Cuda proposes to  manipulate timers quite  easily.  The first
+step is to create the timer\index{Cuda~functions!timer}, then to start it and at
+the end to stop it. For each of these operations a dedicated functions is used.
 
-In  order to  compute  the  same sum  with  a GPU,  the  first  step consits  in
-transferring the data from the CPU (considered as the host with CUDA) to the GPU
-(considered as the  device with CUDA).  A call  to \texttt{cudaMalloc} allows to
+In  order to  compute  the same  sum  with a  GPU, the  first  step consists  in
+transferring the data from the CPU (considered as the host with Cuda) to the GPU
+(considered as the  device with Cuda).  A call  to \texttt{cudaMemcpy} allows to
 copy the content of an array allocated in the host to the device when the fourth
-parameter is set to  \texttt{cudaMemcpyHostToDevice}. The first parameter of the
-function is the destination array, the  second is the source array and the third
-is the number of elements to copy (exprimed in bytes).
-
-Now that the GPU contains the data needed to perform the addition. In sequential
-such addition is achieved  out with a loop on all the  elements.  With a GPU, it
-is possible  to perform the addition of  all elements of the  arrays in parallel
+parameter                                 is                                 set
+to  \texttt{cudaMemcpyHostToDevice}\index{Cuda~functions!cudaMemcpy}.  The first
+parameter of the function is the  destination array, the second is the
+source  array and  the third  is the  number of  elements to  copy  (exprimed in
+bytes).
+
+Now the GPU contains the data needed to perform the addition. In sequential such
+addition is  achieved out with a  loop on all the  elements.  With a  GPU, it is
+possible to perform  the addition of all elements of the  two arrays in parallel
 (if  the  number   of  blocks  and  threads  per   blocks  is  sufficient).   In
 Listing\ref{ch2:lst:ex1}     at    the     beginning,    a     simple    kernel,
 called \texttt{addition} is defined to  compute in parallel the summation of the
-two     arrays.     With     CUDA,      a     kernel     starts     with     the
-keyword   \texttt{\_\_global\_\_}   \index{CUDA~keywords!\_\_shared\_\_}   which
+two     arrays.      With     Cuda,     a     kernel     starts     with     the
+keyword   \texttt{\_\_global\_\_}   \index{Cuda~keywords!\_\_shared\_\_}   which
 indicates that this kernel can be called from the C code.  The first instruction
 in this kernel is used to compute the variable \texttt{tid} which represents the
 thread index.   This thread index\index{thread  index} is computed  according to
-the   values    of   the   block   index    (it   is   a    variable   of   CUDA
-called  \texttt{blockIdx}\index{CUDA~keywords!blockIdx}). Blocks of  threads can
-be decomposed into  1 dimension, 2 dimensions or 3  dimensions. According to the
-dimension of data  manipulated, the appropriate dimension can  be useful. In our
-example, only  one dimension  is used.  Then  using notation \texttt{.x}  we can
-access to the first dimension (\texttt{.y} and \texttt{.z} allow respectively to
-access      to      the     second      and      third     dimension).       The
-variable \texttt{blockDim}\index{CUDA~keywords!blockDim} gives  the size of each
-block.
+the           values            of           the           block           index
+(called  \texttt{blockIdx} \index{Cuda~keywords!blockIdx}  in Cuda)  and  of the
+thread   index   (called   \texttt{blockIdx}\index{Cuda~keywords!threadIdx}   in
+Cuda). Blocks of threads and thread  indexes can be decomposed into 1 dimension, 2
+dimensions or 3 dimensions.  According to the dimension of data manipulated, the
+appropriate dimension can be useful. In our example, only one dimension is used.
+Then  using  notation   \texttt{.x}  we  can  access  to   the  first  dimension
+(\texttt{.y}  and \texttt{.z}  allow respectively  to access  to the  second and
+third dimension).   The variable \texttt{blockDim}\index{Cuda~keywords!blockDim}
+gives the size of each block.
 
 
 
 \lstinputlisting[label=ch2:lst:ex1,caption=A simple example]{Chapters/chapter2/ex1.cu}
 
 \section{Second example: using CUBLAS}
-
-The Basic Linear Algebra Subprograms  (BLAS) allows programmer to use performant
-routines that are often used. Those routines are heavily used in many scientific
-applications  and  are  very   optimized  for  vector  operations,  matrix-vector
-operations                           and                           matrix-matrix
-operations~\cite{ch2:journals/ijhpca/Dongarra02}. Some of those operations seem
-to be  easy to  implement with CUDA.   Nevertheless, as  soon as a  reduction is
-needed, implementing an efficient reduction routines with CUDA is far from being
-simple.
+\label{ch2:2ex}
+
+The Basic Linear Algebra Subprograms  (BLAS) allows programmers to use efficient
+routines  that are  often  required. Those  routines  are heavily  used in  many
+scientific  applications   and  are   very  optimized  for   vector  operations,
+matrix-vector              operations              and             matrix-matrix
+operations~\cite{ch2:journals/ijhpca/Dongarra02}. Some  of those operations seem
+to be  easy to  implement with Cuda.   Nevertheless, as  soon as a  reduction is
+needed, implementing an efficient reduction routines with Cuda is far from being
+simple. Roughly speaking, a reduction operation\index{reduction~operation} is an
+operation  which combines  all the  elements of  an array  and extract  a number
+computed with all the  elements. For example, a sum, a maximum  or a dot product
+are reduction operations.
 
 In this second example, we consider that  we have two vectors $A$ and $B$. First
 of all, we want to compute the sum  of both vectors in a vector $C$. Then we want
 to compute the  scalar product between $1/C$ and $1/A$. This  is just an example
-which has no direct interest except to show how to program it with CUDA.
+which has no direct interest except to show how to program it with Cuda.
 
-Listing~\ref{ch2:lst:ex2} shows this example with CUDA. The first kernel for the
+Listing~\ref{ch2:lst:ex2} shows this example with Cuda. The first kernel for the
 addition  of two  arrays  is exactly  the same  as  the one  described in  the
 previous example.
 
@@ -104,10 +115,86 @@ second arguments is the size of  each elements, the third element represents the
 source of the  array to transfer (in  the GPU), the fourth is  an offset between
 each element of  the source (usually this value  is set to 1), the  fifth is the
 destination (in the GPU)  and the last is an offset between  each element of the
-destination.
-
-\lstinputlisting[label=ch2:lst:ex2,caption=A simple example]{Chapters/chapter2/ex2.cu}
-
+destination. Then we call the kernel \texttt{addition} which computes the sum of
+all elements of arrays $A$ and $B$. The \texttt{inverse} kernel is called twice,
+once to  inverse elements of array  $C$ and once  for $A$. Finally, we  call the
+function \texttt{cublasDdot} which  computes the dot product of  two vectors. To
+use this routine, we must specify  the handle initialized by Cuda, the number of
+elements to consider,  then each vector is followed by  the offset between every
+element.  After  the  GPU  computation,  it  is  possible  to  check  that  both
+computation produce the same result.
+
+\lstinputlisting[label=ch2:lst:ex2,caption=A simple example with cublas]{Chapters/chapter2/ex2.cu}
+
+\section{Third example: matrix-matrix multiplication}
+\label{ch2:3ex}
+
+
+
+Matrix-matrix multiplication is an operation  which is quite easy to parallelize
+with a GPU. If we consider that  a matrix is represented using a two dimensional
+array,  A[i][j] represents  the  the element  of  the $i^{th}$  row  and of  the
+$j^{th}$ column. In many case, it is easier to manipulate 1D array instead of 2D
+array.   With Cuda,  even if  it is  possible to  manipulate 2D  arrays,  in the
+following we  present an example  based on 1D  array. For sake of  simplicity we
+consider  we  have  a  squared  matrix  of size  \texttt{size}.  So  with  a  1D
+array, \texttt{A[i*size+j]} allows  us to access to the  element of the $i^{th}$
+row and of the $j^{th}$ column.
+
+With  a sequential  programming, the  matrix multiplication  is  performed using
+three loops. Supposing that $A$, $B$  represent two square matrices and that the
+result   of    the   multiplication    of   $A   \times    B$   is    $C$.   The
+element \texttt{C[i*size+j]} is computed as follows:
+\begin{equation}
+C[i*size+j]=\sum_{k=0}^{size-1} A[i*size+k]*B[k*size+j];
+\end{equation}
+
+In  Listing~\ref{ch2:lst:ex3}, in  the CPU  computation,  this part  of code  is
+performed using 3 loops, one for $i$, one  for $j$ and one for $k$.  In order to
+perform the same computation on a  GPU, a naive solution consists in considering
+that the matrix $C$ is split into  2 dimensional blocks.  The size of each block
+must be chosen such  as the number of threads per block  is inferior to $1,024$.
+
+
+In Listing~\ref{ch2:lst:ex3},  we consider that  a block contains 16  threads in
+each   dimension,  the   variable  \texttt{width}   is  used   for   that.   The
+variable \texttt{nbTh} represents the number of threads per block. So to be able
+to compute the matrix-matrix product on a GPU, each block of threads is assigned
+to compute the result  of the product for the elements of  this block.  The main
+part of the code is quite similar to the previous code.  Arrays are allocated in
+the  CPU and  the GPU.   Matrices $A$  and $B$  are randomly  initialized.  Then
+arrays are  transfered inside the  GPU memory with call  to \texttt{cudaMemcpy}.
+So the first step for each thread of a block is to compute the corresponding row
+and   column.    With   a    2   dimensional   decomposition,   \texttt{int   i=
+blockIdx.y*blockDim.y+ threadIdx.y;} allows us to compute the corresponding line
+and  \texttt{int  j=   blockIdx.x*blockDim.x+  threadIdx.x;}  the  corresponding
+column. Then each  thread has to compute the  sum of the product of  the line of
+$A$   per   the  column   of   $B$.    In  order   to   use   a  register,   the
+kernel  \texttt{matmul}  uses a  variable  called  \texttt{sum}  to compute  the
+sum. Then the result is set into  the matrix at the right place. The computation
+of  CPU matrix-matrix multiplication  is performed  as described  previously.  A
+timer measures  the time.   In order to  use 2 dimensional  blocks, \texttt{dim3
+dimGrid(size/width,size/width);} allows us  to create \texttt{size/width} blocks
+in each  dimension.  Likewise,  \texttt{dim3 dimBlock(width,width);} is  used to
+create \texttt{width} thread  in each dimension. After that,  the kernel for the
+matrix  multiplication is  called. At  the end  of the  listing, the  matrix $C$
+computed by the GPU is transfered back  in the CPU and we check if both matrices
+C computed by the CPU and the GPU are identical with a precision of $10^{-4}$.
+
+
+On C2070M Tesla card, this code take $37.68$ms to perform the multiplication. On
+a Intel Xeon E31245 at  $3.30$GHz, it takes $2465$ms without any parallelization
+(using only one core). Consequently the speed up between the CPU and GPU version
+is about $65$ which is very  good regarding the difficulty of parallelizing this
+code.
+
+\lstinputlisting[label=ch2:lst:ex3,caption=simple Matrix-matrix multiplication with cuda]{Chapters/chapter2/ex3.cu}
+
+\section{Conclusion}
+In this chapter  3 simple Cuda examples have been  presented. Those examples are
+quite  simple  and  they  cannot  present  all the  possibilities  of  the  Cuda
+programming.   Interested  readers  are  invited  to  consult  Cuda  programming
+introduction books if some issues regarding the Cuda programming is not clear.
 
 \putbib[Chapters/chapter2/biblio]