- \item The {\it selection operator} chooses one node to process among the pending nodes according to a defined strategy. If the selection is based on the depth of the sub-problem in the B\&B tree, we speak about a depth-first exploration strategy. A selection based on the breadth of the sub-problem is called a breadth-first exploration. A best-first selection strategy could also be used. It is based on the presumed capacity of the node to yield good solutions.
- \item The {\it branching operator} subdivides a solution space into two or more disjointed sub-spaces to be investigated in a subsequent iteration.
- \item The {\it bounding operator} computes a bound value of the optimal solution of each generated sub-problem.
- \item Each sub-problem having a greater bound than the upper-bound, i.e. the cost of the best solution found so far, is eliminated using the {\it pruning operator}.
+ \item The {\it selection operator} chooses one node to process among the pending nodes according to a defined strategy. If the selection is based on the depth of the subproblem in the B\&B tree, we speak about a depth-first exploration strategy. A selection based on the breadth of the subproblem is called a breadth-first exploration. A best-first selection strategy could also be used. It is based on the presumed capacity of the node to yield good solutions.
+ \item The {\it branching operator} subdivides a solution space into two or more disjointed subspaces to be investigated in a subsequent iteration.
+ \item The {\it bounding operator} computes a bound value of the optimal solution of each generated subproblem.
+ \item Each subproblem having a greater bound than the upper-bound, i.e., the cost of the best solution found so far, is eliminated using the {\it pruning operator}.