-The ratio between necessary data transfers and computational work for the proposed numerical model for free surface water waves is high enough to expect reasonable latency hiding. The data domain decomposition method consists of a logically structured division of the computational domain into multiple subdomains. Each of these subdomains are connected via fictitious ghost layers at the artificial boundaries of width corresponding to the half-width of the finite difference stencils employed. This results in a favourable volume-to-boundary ratio as the problem size increases, diminishing communication overhead for message passing. Information between subdomains are exchanged through ghost layers at every step of the iterative PDC method, in connection with the matrix-vector evaluation for the $\sigma$-transformed Laplace problem, and before relaxation steps in the multigrid method. A single global synchronization point occur at most once each iteration, if convergence is monitored, where a global reduction step (inner product) between all processor nodes takes place. The main advantage of this decomposition strategy is, that the decomposition into multiple subdomains is straightforward. However, it comes with the cost of extra data transfers to update the set of fictitious ghost layers.
-
-The parallel domain decomposition solver has been validated against the sequential solvers with respect to algorithmic efficiency to establish that the code produce correct results. An analysis of the numerical efficiency have also been carried out on different GPU systems to identify comparative behaviors as both the problems sizes and number of compute nodes vary. For example, performance scalings on Test environment 1 and Test environment 2 are presented in figure \ref{ch7:fig:multigpuperformance}. The figure confirms that there is only a limited benefit from using multiple GPUs for small problem sizes, since the computational intensity is simply too low to efficiently hide the latency of message passing. A substantial speedup is achieved compared to the single GPU version, while being able to solve even larger systems.
-With the linear scaling of memory requirements and improved computational speed, the methodology based on multiple GPUs makes it possible to simulate water waves in very large numerical wave tanks with improved performance.
+The ratio between necessary data transfers and computational work for the proposed numerical model for free surface water waves is high enough to expect reasonable latency hiding. The data domain decomposition method consists of a logically structured division of the computational domain into multiple subdomains. Each of these subdomains is connected via fictitious ghost layers at the artificial boundaries of width corresponding to the half-width of the finite difference stencils employed. This results in a favorable volume-to-boundary ratio as the problem size increases, and diminishing communication overhead for message passing. Information between subdomains is exchanged through ghost layers at every step of the iterative PDC method, in connection with the matrix-vector evaluation for the $\sigma$-transformed Laplace problem, and before relaxation steps in the multigrid method. A single global synchronization point occurs at most once each iteration, if convergence is monitored, where a global reduction step (inner product) between all processor nodes takes place. The main advantage of this decomposition strategy is that the decomposition into multiple subdomains is straightforward. However, it comes with the cost of extra data transfers to update the set of fictitious ghost layers.