u(x,y,t_0) = \sin(\pi x)\,\sin(\pi y), & \qquad (x,y) \in \Omega.
\end{align}
An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition is given in Figure \ref{ch5:fig:heatsolution}.
-\begin{figure}[!htb]
+\begin{figure}[!htbp]
\begin{center}
\setlength\figurewidth{0.3\textwidth} %
- \setlength\figureheight{0.32\textwidth} %
+ \setlength\figureheight{0.3\textwidth} %
\subfigure[$t=0.00s$]%{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
\subfigure[$t=0.05s$]%{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
%\subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
+{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
\end{center}
\caption{Discrete solution at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution}
\end{figure}