]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter16/gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter16 / gpu.tex
index 623ac81d27112085ea12e9ff159e7c2683a84449..bdd4ad02d3e2209be8dfb58b13c651f59c131926 100644 (file)
@@ -5,7 +5,7 @@ In this section, we explain how to efficiently
 use matrix-free GMRES to solve
 the Newton update problems with implicit sensitivity calculation,
 i.e., the steps enclosed by the double dashed block
-in Fig.~\ref{fig:ef_flow}.
+in Figure~\ref{fig:ef_flow}.
 Then implementation issues of GPU acceleration
 will be discussed in detail. 
 Finally,  the Gear-2 integration is briefly introduced.
@@ -225,7 +225,7 @@ Hence, in consideration of the serial nature of the trianularization,
 the small size of Hessenberg matrix,
 and the frequent inspection of values by host, it is
 preferable to allocate $\tilde{H}$ in CPU (host) memory.
-As shown in Fig.~\ref{fig:gmres}, the memory copy from device to host
+As shown in Figure~\ref{fig:gmres}, the memory copy from device to host
 is called each time when Arnoldi iteration generates a new vector
 and the orthogonalization produces the vector $h$.