Results from numerical experiments are presented in Figure \ref{ch7:filtering}, and most of the errors can be attributed to phase errors resulting from difference in exact versus numerical phase speed. In numerical experiments, we find that while results computed in double-precision are not significantly affected by accumulation of round-off errors, the single-precision results are. In Figures \ref{ch7:filtering} (a) and (b), a direct solver based on sparse Gaussian elimination within MATLAB\footnote{\url{http://www.mathworks.com}.} is used to solve the linear system at every stage and a comparison is made between single- and unfiltered double-precision calculations. It is shown in Figure \ref{ch7:filtering} a) that without a filter, the single-precision calculations result in ``blow-up'' after which the solver fails just before 50 wave periods of calculation time. However, in Figure \ref{ch7:filtering} (b) it is demonstrated that invoking a smoothening filter, cf. \eqref{ch7:filter}, stabilizes the accumulation of round-off errors and the calculations continue and achieve reduced accuracy compared to the computed double-precision results. Thus, it is confirmed that such a filter can be used to control and suppress high-frequency oscillations that results from accumulation of round-off errors. In contrast, replacing the direct solver with an iterative PDC method using the GPU-accelerated wave model appears to be much more attractive upon inspection of Figures \ref{ch7:filtering} (c) and (d). The single-precision results are found to be stable with and {\em without} the filter-based strategy for this problem. The calculations show that single-precision math leads to slightly faster error accumulation for this choice of resolution, however, with only small differences in error level during long time integration. This highlights that fault-tolerance of the iterative PDC method contributes to securing robustness of the calculations.
Results from numerical experiments are presented in Figure \ref{ch7:filtering}, and most of the errors can be attributed to phase errors resulting from difference in exact versus numerical phase speed. In numerical experiments, we find that while results computed in double-precision are not significantly affected by accumulation of round-off errors, the single-precision results are. In Figures \ref{ch7:filtering} (a) and (b), a direct solver based on sparse Gaussian elimination within MATLAB\footnote{\url{http://www.mathworks.com}.} is used to solve the linear system at every stage and a comparison is made between single- and unfiltered double-precision calculations. It is shown in Figure \ref{ch7:filtering} a) that without a filter, the single-precision calculations result in ``blow-up'' after which the solver fails just before 50 wave periods of calculation time. However, in Figure \ref{ch7:filtering} (b) it is demonstrated that invoking a smoothening filter, cf. \eqref{ch7:filter}, stabilizes the accumulation of round-off errors and the calculations continue and achieve reduced accuracy compared to the computed double-precision results. Thus, it is confirmed that such a filter can be used to control and suppress high-frequency oscillations that results from accumulation of round-off errors. In contrast, replacing the direct solver with an iterative PDC method using the GPU-accelerated wave model appears to be much more attractive upon inspection of Figures \ref{ch7:filtering} (c) and (d). The single-precision results are found to be stable with and {\em without} the filter-based strategy for this problem. The calculations show that single-precision math leads to slightly faster error accumulation for this choice of resolution, however, with only small differences in error level during long time integration. This highlights that fault-tolerance of the iterative PDC method contributes to securing robustness of the calculations.