-An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition is given in Figure \ref{ch5:fig:heatsolution}.
-\begin{figure}[!htb]
- \begin{center}
- \setlength\figurewidth{0.3\textwidth} %
- \setlength\figureheight{0.32\textwidth} %
- \subfigure[$t=0.00s$]%{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
- \subfigure[$t=0.05s$]%{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
- %\subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}}
-{\includegraphics[width=0.5\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
- \end{center}
- \caption{Discrete solution at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution}
+because it has a known analytic solution over the entire time span, and it satisfies the homogeneous boundary condition given by \eqref{ch5:eq:heateqbc}. An illustrative example of the numerical solution to the heat problem, using \eqref{ch5:eq:heatinit} as the initial condition, is given in Figure \ref{ch5:fig:heatsolution}.
+\begin{figure}[!htbp]
+ \scriptsize
+ \centering
+ \setlength\figurewidth{0.26\textwidth} %
+ \setlength\figureheight{0.26\textwidth} %
+ \subfigure[$t=0.00s$]{\input{Chapters/chapter5/figures/HeatSolution0.tikz}}%
+%{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_conv.pdf}}
+ \subfigure[$t=0.05s$]{\input{Chapters/chapter5/figures/HeatSolution0.049307.tikz}}%
+%{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_049307_conv.pdf}}
+ \subfigure[$t=0.10s$]{\input{Chapters/chapter5/figures/HeatSolution0.099723.tikz}}%
+%{\includegraphics[width=0.48\textwidth]{Chapters/chapter5/figures/HeatSolution0_099723_conv.pdf}}
+ \caption{Discrete solution, at times $t=0s$ and $t=0.05s$, using \eqref{ch5:eq:heatinit} as the initial condition and a small $20\times20$ numerical grid.}\label{ch5:fig:heatsolution}