-where $u_0$ is the initial condition, $c\geq 0$, $b$ and $\eta$ are physical parameters,
-$T$ is the final time, $u=u(t,x,y,z)$ is an element of the solution vector $U$ to compute,
-$f$ is the right-hand side that could represent, for example, the external forces, B.C.
-describes the boundary conditions on the boundary $\partial\Omega$ of the domain $\Omega$,
-$\phi$ models a constraint imposed to $u$, $\Delta$ is the Laplacian operator, $\nabla$
-is the gradient operator, a.e.w. means almost every where and ``.'' defines the products
-between two scalars, a scalar and a vector or a matrix and a vector. In practice the boundary
+where $u_0$ is the initial condition; $c\geq 0$, $b$, and $\eta$ are physical parameters;
+$T$ is the final time; $u=u(t,x,y,z)$ is an element of the solution vector $U$ to compute;
+$f$ is the right-hand side that could represent, for example, the external forces; B.C.
+describes the boundary conditions on the boundary $\partial\Omega$ of the domain $\Omega$;
+$\phi$ models a constraint imposed to $u$; $\Delta$ is the Laplacian operator; $\nabla$
+is the gradient operator; a.e.w. means almost everywhere, and ``.'' defines the products
+between two scalars, a scalar and a vector, or a matrix and a vector. In practice the boundary