+
+We have used the parallel CG and GMRES algorithms for solving sparse linear systems of $25$
+million unknown values. The sparse matrices associated to these linear systems are generated
+from those presented in Table~\ref{ch12:tab:01}. Their main characteristics are given in Table~\ref{ch12:tab:04}.
+Tables~\ref{ch12:tab:05} and~\ref{ch12:tab:06} shows the performances of the parallel CG and
+GMRES solvers, respectively, obtained on a cluster of $24$ CPU cores and on a cluster of $12$
+GPUs. Obviously, we can notice from these tables that solving large sparse linear systems on
+a GPU cluster is more efficient than on a CPU cluster (see relative gains $\tau$). We can also
+notice that the execution times of the CG method, whether in a CPU cluster or in a GPU cluster,
+are better than those of the GMRES method for solving large symmetric linear systems. In fact, the
+CG method is characterized by a better convergence\index{Convergence} rate and a shorter execution
+time of an iteration than those of the GMRES method. Moreover, an iteration of the parallel GMRES
+method requires more data exchanges between computing nodes compared to the parallel CG method.
+
+