%% %\renewcommand{\baselinestretch}{1}
-%% \begin{table}[!h]
-%% \begin{center}
-%% \caption{The average CPU time (sec) of the serial PAVA, MLS and parallel MLS algorithms. } \label{ch11:table1}
-%% \begin{tabular}{|r|r|r|r|}
-
-%% Data & PAVA & MLS & GPU MLS \\ \hline
-
-%% monotone increasing $f$ & & & \\
-%% $n=5\times 10^4$ &0.01&5& 0.092\\
-%% $n=10^5$ &0.03&40& 0.35\\
-%% $n=5\times 10^5$ &0.4&1001&8.6 \\
-%% $n=10^6$ &0.8& 5000& 38 \\
-%% $n=2 \times 10^6$ & 1.6 &-- &152 \\
-%% $n=10 \times 10^6$ & 2 &-- & 3500 \\
-%% $n=20 \times 10^6$ & 4.5&-- & --\\
-%% $n=50 \times 10^6$ & 12 &-- & --\\
-%% \hline
-
-%% constant or decreasing $f$ & & & \\
-%% $n=10^6$ &0.2&0.1& 38\\
-%% $n=10 \times 10^6$ &1.9& 1.9& 3500 \\
-%% $n=20 \times 10^6$ &3.5& 4.0&-- \\
-%% $n=50 \times 10^6$ &11& 11& -- \\
-
-%% \end{tabular}
-%% \end{center}
-%% \end{table}
+\begin{table}[!h]
+\begin{center}
+\caption{The average CPU time (sec) of the serial PAVA, MLS and parallel MLS algorithms. } \label{ch11:table1}
+\begin{tabular}{|r|r|r|r|}
+
+Data & PAVA & MLS & GPU MLS \\ \hline
+
+monotone increasing $f$ & & & \\
+$n=5\times 10^4$ &0.01&5& 0.092\\
+$n=10^5$ &0.03&40& 0.35\\
+$n=5\times 10^5$ &0.4&1001&8.6 \\
+$n=10^6$ &0.8& 5000& 38 \\
+$n=2 \times 10^6$ & 1.6 &-- &152 \\
+$n=10 \times 10^6$ & 2 &-- & 3500 \\
+$n=20 \times 10^6$ & 4.5&-- & --\\
+$n=50 \times 10^6$ & 12 &-- & --\\
+\hline
+
+constant or decreasing $f$ & & & \\
+$n=10^6$ &0.2&0.1& 38\\
+$n=10 \times 10^6$ &1.9& 1.9& 3500 \\
+$n=20 \times 10^6$ &3.5& 4.0&-- \\
+$n=50 \times 10^6$ &11& 11& -- \\
+
+\end{tabular}
+\end{center}
+\end{table}
%% %\renewcommand{\baselinestretch}{2}