]> AND Private Git Repository - book_gpu.git/blobdiff - BookGPU/Chapters/chapter3/ch3.aux
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[book_gpu.git] / BookGPU / Chapters / chapter3 / ch3.aux
index 69d76c60f7f693b25427bf2b6e07e4c61fb2b744..0fb9a0d1efe6382a59824bb7541d222844791f8d 100644 (file)
@@ -4,18 +4,18 @@
 \@writefile{toc}{\contentsline {chapter}{\numberline {3}Setting up the environnement.}{25}}
 \@writefile{lof}{\addvspace {10\p@ }}
 \@writefile{lot}{\addvspace {10\p@ }}
-\newlabel{algo:memcopy:H2D}{{7}{25}}
-\newlabel{algo:memcopy:kernel}{{8}{25}}
-\newlabel{algo:memcopy:D2H}{{9}{25}}
-\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces Global memory management on CPU and GPU sides.\relax }}{25}}
-\newlabel{algo:memcopy}{{1}{25}}
-\@writefile{toc}{\contentsline {section}{\numberline {3.1}Data transfers, memory management.}{26}}
+\@writefile{toc}{\contentsline {section}{\numberline {3.1}Data transfers, memory management.}{25}}
+\newlabel{algo:memcopy:H2D}{{7}{26}}
+\newlabel{algo:memcopy:kernel}{{8}{26}}
+\newlabel{algo:memcopy:D2H}{{9}{26}}
+\@writefile{loa}{\contentsline {algocf}{\numberline {1}{\ignorespaces global memory management on CPU and GPU sides\relax }}{26}}
+\newlabel{algo:memcopy}{{1}{26}}
 \newlabel{lst:main1}{{3.1}{27}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.1}Generic main.cu file used to launch CUDA kernels}{27}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.1}generic main.cu file used to launch CUDA kernels}{27}}
 \newlabel{lst:fkern1}{{3.2}{27}}
 \@writefile{lol}{\contentsline {lstlisting}{\numberline {3.2}fast\_kernels.cu file featuring one kernel skeleton}{27}}
 \newlabel{lst:mkfile}{{3.3}{28}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.3}Generic Makefile based on those provided by NV SDK}{28}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {3.3}generic makefile based on those provided by NVIDIA SDK}{28}}
 \@writefile{toc}{\contentsline {section}{\numberline {3.2}Performance measurements}{28}}
 \newlabel{lst:chronos}{{3.4}{28}}
 \@writefile{lol}{\contentsline {lstlisting}{\numberline {3.4}Time measurement technique using cutil functions}{28}}
 \@writefile{toc}{\contentsline {section}{\numberline {4.1}Introduction}{31}}
 \@writefile{toc}{\contentsline {section}{\numberline {4.2}Median filtering}{32}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}Basic principles}{32}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}A naive implementation}{32}}
-\newlabel{img:sap_example_ref}{{4.1(a)}{33}}
-\newlabel{sub@img:sap_example_ref}{{(a)}{33}}
-\newlabel{img:sap_example_med3}{{4.1(b)}{33}}
-\newlabel{sub@img:sap_example_med3}{{(b)}{33}}
-\newlabel{img:sap_example_med5}{{4.1(c)}{33}}
-\newlabel{sub@img:sap_example_med5}{{(c)}{33}}
-\newlabel{img:sap_example_med3_it2}{{4.1(d)}{33}}
-\newlabel{sub@img:sap_example_med3_it2}{{(d)}{33}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Example of median filtering, applied to salt \& pepper noise reduction.\relax }}{33}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted by salt and pepper noise of density 0.25}}}{33}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ median filter}}}{33}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ median filter}}}{33}}
-\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image denoised by 2 iterations of a $3\times 3$ median filter}}}{33}}
-\newlabel{fig:sap_examples}{{4.1}{33}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Example of 5x5 median filtering\relax }}{32}}
+\newlabel{fig:median_1}{{4.1}{32}}
+\newlabel{algoMedianGeneric}{{2}{33}}
+\newlabel{algoMedianGeneric:memcpyH2D}{{1}{33}}
+\newlabel{algoMedianGeneric:cptstart}{{3}{33}}
+\newlabel{algoMedianGeneric:cptend}{{5}{33}}
+\newlabel{algoMedianGeneric:memcpyD2H}{{7}{33}}
+\@writefile{loa}{\contentsline {algocf}{\numberline {2}{\ignorespaces generic n$\times $n median filter\relax }}{33}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}A naive implementation}{33}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Illustration of window overlapping in 5x5 median filtering\relax }}{34}}
+\newlabel{fig:median_overlap}{{4.2}{34}}
 \newlabel{lst:medianGeneric}{{4.1}{34}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.1}Generic CUDA kernel achieving median filtering}{34}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Example of 5x5 median filtering\relax }}{35}}
-\newlabel{fig:median_1}{{4.2}{35}}
-\newlabel{algoMedianGeneric}{{2}{35}}
-\newlabel{algoMedianGeneric:memcpyH2D}{{1}{35}}
-\newlabel{algoMedianGeneric:cptstart}{{3}{35}}
-\newlabel{algoMedianGeneric:cptend}{{5}{35}}
-\newlabel{algoMedianGeneric:memcpyD2H}{{7}{35}}
-\@writefile{loa}{\contentsline {algocf}{\numberline {2}{\ignorespaces generic n$\times $n median filter\relax }}{35}}
-\@writefile{toc}{\contentsline {section}{\numberline {4.3}NVidia GPU tuning recipes}{35}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Illustration of window overlapping in 5x5 median filtering\relax }}{36}}
-\newlabel{fig:median_overlap}{{4.3}{36}}
-\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Performance results of \texttt  {kernel medianR}. \relax }}{36}}
-\newlabel{tab:medianHisto1}{{4.1}{36}}
-\@writefile{toc}{\contentsline {section}{\numberline {4.4}A 3$\times $3 median filter: using registers }{37}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.1}generic CUDA kernel achieving median filtering}{34}}
+\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Performance results of \texttt  {kernel medianR}. \relax }}{35}}
+\newlabel{tab:medianHisto1}{{4.1}{35}}
+\@writefile{toc}{\contentsline {section}{\numberline {4.3}NVIDIA GPU tuning recipes}{35}}
+\newlabel{img:sap_example_ref}{{4.3(a)}{36}}
+\newlabel{sub@img:sap_example_ref}{{(a)}{36}}
+\newlabel{img:sap_example_med3}{{4.3(b)}{36}}
+\newlabel{sub@img:sap_example_med3}{{(b)}{36}}
+\newlabel{img:sap_example_med5}{{4.3(c)}{36}}
+\newlabel{sub@img:sap_example_med5}{{(c)}{36}}
+\newlabel{img:sap_example_med3_it2}{{4.3(d)}{36}}
+\newlabel{sub@img:sap_example_med3_it2}{{(d)}{36}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Example of median filtering, applied to salt and pepper noise reduction.\relax }}{36}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted by salt and pepper noise of density 0.25}}}{36}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ median filter}}}{36}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ median filter}}}{36}}
+\@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {Image denoised by 2 iterations of a $3\times 3$ median filter}}}{36}}
+\newlabel{fig:sap_examples}{{4.3}{36}}
+\@writefile{toc}{\contentsline {section}{\numberline {4.4}A 3$\times $3 median filter: using registers}{37}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}The simplest way}{37}}
 \newlabel{lst:kernelMedian3RegTri9}{{4.2}{38}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.2}3$\times $3 median filter kernel using one register per neighborhood pixel and bubble sort}{38}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.2}$3\times 3$ median filter kernel using one register per neighborhood pixel and bubble sort}{38}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}Further optimization}{38}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Comparison of pixel throughputs on GPU C2070 and CPU for generic median, 3$\times $3 median register-only and \textit  {libJacket}.\relax }}{39}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Comparison of pixel throughputs for CPU generic median, CPU 3$\times $3 median register-only with bubble sort, GPU generic median, GPU 3$\times $3 median register-only with bubble sort, and GPU libJacket.}}{39}}
 \newlabel{fig:compMedians1}{{4.4}{39}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2.1}Reducing register count }{39}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Forgetful selection with the minimal element register count. Illustration for 3$\times $3 pixel window represented in a row and supposed sorted.\relax }}{40}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Forgetful selection with the minimal element register count. Illustration for $3\times 3$ pixel window represented in a row and supposed sorted.\relax }}{40}}
 \newlabel{fig:forgetful_selection}{{4.5}{40}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Determination of the Median value by the forgetful selection process, applied to a $3\times 3$ neighborhood window.\relax }}{41}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Determination of the median value by the \textit  {forgetful selection} process, applied to a $3\times 3$ neighborhood window.\relax }}{41}}
 \newlabel{fig:forgetful3}{{4.6}{41}}
-\newlabel{lst:medianForget1pix3}{{4.3}{41}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.3}3$\times $3 median filter kernel using the minimum register count of 6 to find the median value by forgetful selection method. The optimal thread block size is 128 on GTX280 and 256 on C2070.}{41}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces First iteration of the $5\times 5$ selection process, with $k_{25}=14$, which shows how Instruction Level Parallelism is maximized by the use of an incomplete sorting network.}}{41}}
+\newlabel{fig:bitonic}{{4.7}{41}}
+\newlabel{lst:medianForget1pix3}{{4.3}{42}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.3}3$\times $3 median filter kernel using the minimum register count of 6 to find the median value by forgetful selection method. The optimal thread block size is 128 on GTX280 and 256 on C2070}{42}}
 \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2.2}More data output per thread}{42}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Illustration of how window overlapping is used to combine 2 pixel selections in a 3$\times $3 median kernel.\relax }}{42}}
-\newlabel{fig:median3_overlap}{{4.7}{42}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Illustration of how window overlapping is used to combine 2 pixel selections in a $3\times 3$ median kernel.\relax }}{43}}
+\newlabel{fig:median3_overlap}{{4.8}{43}}
 \newlabel{lst:medianForget2pix3}{{4.4}{43}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.4}3$\times $3 median filter kernel processing 2 output pixel values per thread using combined forgetful selection.}{43}}
-\@writefile{toc}{\contentsline {section}{\numberline {4.5}A 5$\times $5 and more median filter }{43}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Comparison of pixel throughput on GPU C2070 for the different 3$\times $3 median kernels.\relax }}{44}}
-\newlabel{fig:compMedians2}{{4.8}{44}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.4}$3\times 3$ median filter kernel processing 2 output pixel values per thread using combined forgetful selection}{43}}
+\@writefile{toc}{\contentsline {section}{\numberline {4.5}A 5$\times $5 and more median filter }{44}}
 \newlabel{sec:median5}{{4.5.1}{44}}
 \@writefile{toc}{\contentsline {subsection}{\numberline {4.5.1}A register-only 5$\times $5 median filter }{44}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Reducing register count in a 5$\times $5 register-only median kernel outputting 2 pixels simultaneously.}}{45}}
-\newlabel{fig:median5overlap}{{4.9}{45}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces First iteration of the $5\times 5$ selection process, with $k_{25}=14$, which shows how Instruction Level Parallelism is maximized by the use of an incomplete sorting network.}}{45}}
-\newlabel{fig:bitonic}{{4.10}{45}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Comparison of pixel throughput on GPU C2070 for the different 3$\times $3 median kernels.\relax }}{45}}
+\newlabel{fig:compMedians2}{{4.9}{45}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Reducing register count in a 5$\times $5 register-only median kernel outputting 2 pixels simultaneously.}}{45}}
+\newlabel{fig:median5overlap}{{4.10}{45}}
 \newlabel{lst:medianForget2pix5}{{4.5}{46}}
-\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.5}kernel 5$\times $5 median filter processing 2 output pixel values per thread by a combined forgetfull selection.}{46}}
+\@writefile{lol}{\contentsline {lstlisting}{\numberline {4.5}kernel 5$\times $5 median filter processing 2 output pixel values per thread by a combined forgetfull selection}{46}}
 \@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces Performance of various 5$\times $5 median kernel implementations, applied on 4096$\times $4096 pixel image with C2070 GPU card.\relax }}{47}}
 \newlabel{tab:median5comp}{{4.2}{47}}
-\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Fast approximated n$\times $n median filter }{47}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Fast approximated $n\times n$ median filter }{47}}
 \@writefile{lot}{\contentsline {table}{\numberline {4.3}{\ignorespaces Measured performance of one generic pseudo-separable median kernel applied to 4096$\times $4096 pixel image with various window sizes.\relax }}{48}}
 \newlabel{tab:medianSeparable}{{4.3}{48}}
 \newlabel{img:sap_example_ref}{{4.11(a)}{49}}
 \newlabel{sub@img:sap_example_sep_med5}{{(c)}{49}}
 \newlabel{img:sap_example_sep_med3_it2}{{4.11(d)}{49}}
 \newlabel{sub@img:sap_example_sep_med3_it2}{{(d)}{49}}
-\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Example of separable median filtering (smoother), applied to salt \& pepper noise reduction.\relax }}{49}}
+\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces Example of separable median filtering (smoother), applied to salt and pepper noise reduction.\relax }}{49}}
 \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {Airplane image, corrupted with by salt and pepper noise of density 0.25}}}{49}}
 \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {Image denoised by a $3\times 3$ separable smoother}}}{49}}
 \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {Image denoised by a $5\times 5$ separable smoother}}}{49}}
 \setcounter{enumi}{3}
 \setcounter{enumii}{0}
 \setcounter{enumiii}{0}
-\setcounter{enumiv}{11}
+\setcounter{enumiv}{12}
 \setcounter{footnote}{0}
 \setcounter{mpfootnote}{0}
 \setcounter{part}{2}