-Last, we demonstrate using a classical benchmark for propagation of nonlinear waves over a semicircular shoal that single-precision math is likely to be sufficient for achieving engineering accuracy. The benchmark is based on Whalin's experiment~\cite{ch7:Whalin1971} which is often used in validation of dispersive water wave models for coastal engineering applications, e.g., see previous work \cite{ch7:EBL08}. Experimental results exists for incident waves with wave periods $T=1,2,3\,$s and wave heights $H=0.0390, 0.0150, 0.0136\,$m. All three test cases have been discretized with a computational grid of size ($257 \times 41 \times 7$) to resolve the physical dimensions of $L_x=35\,$m, $L_y=6.096\,$m. The still water depth decreases in the direction of the incident waves as a semicircular shoal from $0.4572\,$m to $0.1524\,$m with an illustration of a snapshot of the free surface given in Figure \ref{ch7:fig:whalinsetup}. The time step $\Delta t$ is computed based on a constant Courant number of $Cr=c\Delta x/\Delta t=0.8$, where $c$ is the incident wave speed and $\Delta x$ is the grid spacing. Waves are generated in the generation zone $0 \leq x/L \leq 1.5$, where $L$ is the wave length of incident waves, and absorbed again in the zone $35 - 2L \leq x \leq 35\,$m.
+Last, we demonstrate using a classical benchmark for propagation of nonlinear waves over a semicircular shoal that single-precision math is likely to be sufficient for achieving engineering accuracy. The benchmark is based on Whalin's experiment~\cite{ch7:Whalin1971} which is often used in validation of dispersive water wave models for coastal engineering applications, e.g., see previous work \cite{ch7:EBL08}. Experimental results exist for incident waves with wave periods $T=1,2,3\,$s and wave heights $H=0.0390, 0.0150, 0.0136\,$m. All three test cases have been discretized with a computational grid of size ($257 \times 41 \times 7$) to resolve the physical dimensions of $L_x=35\,$m, $L_y=6.096\,$m. The still water depth decreases in the direction of the incident waves as a semicircular shoal from $0.4572\,$m to $0.1524\,$m with an illustration of a snapshot of the free surface given in Figure \ref{ch7:fig:whalinsetup}. The time step $\Delta t$ is computed based on a constant Courant number of $Cr=c\Delta x/\Delta t=0.8$, where $c$ is the incident wave speed and $\Delta x$ is the grid spacing. Waves are generated in the generation zone $0 \leq x/L \leq 1.5$, where $L$ is the wave length of incident waves, and absorbed again in the zone $35 - 2L \leq x \leq 35\,$m.