X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/11f93a2e8880680f6b192298e5ce0697d2596a31..1874c46934f4ba7e8c2013d3829f65309456d292:/BookGPU/Chapters/chapter4/ch4.tex diff --git a/BookGPU/Chapters/chapter4/ch4.tex b/BookGPU/Chapters/chapter4/ch4.tex index 0a0d6cb..805de25 100644 --- a/BookGPU/Chapters/chapter4/ch4.tex +++ b/BookGPU/Chapters/chapter4/ch4.tex @@ -8,7 +8,7 @@ \section{Overview} In this chapter, after dealing with GPU median filter implementations, -we propose to explore how convolutions\index{Convolution} can be implemented on modern +we propose to explore how convolutions\index{convolution} can be implemented on modern GPUs. Widely used in digital image processing filters, the \emph{convolution operation} basically consists of taking the sum of products of elements from two 2D functions, letting one of the two functions move over @@ -81,7 +81,7 @@ This first implementation consists of a rather naive application to convolutions of the techniques applied to median filters in the previous chapter, as a reminder: texture memory used with incoming data, pinned memory with output data, optimized use of registers -while processing data and multiple output per thread\index{Multiple output per thread}. +while processing data and multiple output per thread\index{multiple output per thread}. One significant difference lies in the fact that the median filter uses only one parameter, the size of the window mask, which can be hard-coded, while a convolution mask requires referring to several parameters; hard-coding @@ -239,7 +239,7 @@ However, our technique requires writing one kernel per mask size, which can be s \lstinputlisting[label={lst:convoGene8x8pL3},caption=CUDA kernel achieving a $3\times 3$ convolution operation with the mask in symbol memory and direct data fetches in texture memory]{Chapters/chapter4/code/convoGene8x8pL3.cu} -\subsection{Using shared memory to store prefetched data\index{Prefetching}.} +\subsection{Using shared memory to store prefetched data\index{prefetching}.} \index{memory~hierarchy!shared~memory} A more convenient way of coding a convolution kernel is to use shared memory to perform a prefetching stage of the whole halo before computing the convolution sums. This proves to be quite efficient and more versatile, but it obviously generates some overhead because @@ -356,7 +356,7 @@ $\mathbf{4096\times 4096}$&1.533 \\\hline \label{tab:cpyToArray} \end{table} \lstinputlisting[label={lst:convoSepSh},caption=data copy between the calls to 1D convolution kernels achieving a 2D separable convolution operation]{Chapters/chapter4/code/convoSepSh.cu} -\lstinputlisting[label={lst:convoSepShV},caption=CUDA kernel achieving a horizontal 1D convolution operation after a preloading \index{Prefetching} of data into shared memory]{Chapters/chapter4/code/convoSepShV.cu} +\lstinputlisting[label={lst:convoSepShV},caption=CUDA kernel achieving a horizontal 1D convolution operation after a preloading \index{prefetching} of data into shared memory]{Chapters/chapter4/code/convoSepShV.cu} \lstinputlisting[label={lst:convoSepShH},caption=CUDA kernel achieving a vertical 1D convolution operation after a preloading of data into shared memory]{Chapters/chapter4/code/convoSepShH.cu} \section{Conclusion}