X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/1874c46934f4ba7e8c2013d3829f65309456d292..6318153555fcb28c475d77850cce474032d79f5a:/BookGPU/Chapters/chapter1/ch1.tex diff --git a/BookGPU/Chapters/chapter1/ch1.tex b/BookGPU/Chapters/chapter1/ch1.tex index 9c3d8af..e3cbd81 100755 --- a/BookGPU/Chapters/chapter1/ch1.tex +++ b/BookGPU/Chapters/chapter1/ch1.tex @@ -139,12 +139,12 @@ Figure~\ref{ch1:fig:latency_throughput} illustrates the main difference of memory latency between a CPU and a GPU. In a CPU, tasks ``ti'' are executed one by one with a short memory latency to get the data to process. After some tasks, there is a context switch that allows the CPU to run concurrent applications -and/or multi-threaded applications. {\bf REPHRASE} Memory latencies are longer in a GPU, the +and/or multi-threaded applications. Memory latencies are longer in a GPU. Thhe principle to obtain a high throughput is to have many tasks to compute. Later we will see that these tasks are called threads with CUDA. With this principle, as soon as a task is finished the next one is ready to be -executed while the wait for data for the previous task is overlapped by -computation of other tasks. {\bf HERE} +executed while the wait for data for the previous task is overlapped by the +computation of other tasks. @@ -215,14 +215,14 @@ by the threads of a GPU. When the problem considered is a two-dimensional or practice, the number of thread blocks and the size of thread blocks are given as parameters to each kernel. Figure~\ref{ch1:fig:scalability} illustrates an example of a kernel composed of 8 thread blocks. Then this kernel is executed on -a small device containing only 2 SMs. {\bf RELIRE} So in this case, blocks are executed 2 +a small device containing only 2 SMs. So in this case, blocks are executed 2 by 2 in any order. If the kernel is executed on a larger CUDA device containing 4 SMs, blocks are executed 4 by 4 simultaneously. The execution times should be approximately twice faster in the latter case. Of course, that depends on other parameters that will be described later (in this chapter and other chapters). -{\bf RELIRE} -Thread blocks provide a way to cooperation in the sense that threads of the same + +Thread blocks provide a way to cooperate in the sense that threads of the same block cooperatively load and store blocks of memory they all use. Synchronizations of threads in the same block are possible (but not between threads of different blocks). Threads of the same block can also share results