X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/1a01129f963257afbf1ca4effbb4e6e1f378cefa..31c87768e1b18e90d982b335cadb326853c1c0ce:/BookGPU/Chapters/chapter11/ch11.tex diff --git a/BookGPU/Chapters/chapter11/ch11.tex b/BookGPU/Chapters/chapter11/ch11.tex index 7e319fd..270fcc4 100644 --- a/BookGPU/Chapters/chapter11/ch11.tex +++ b/BookGPU/Chapters/chapter11/ch11.tex @@ -28,14 +28,14 @@ The rest of the chapter is organised as follows. Section \ref{ch11:splines} disc \begin{figure}[h] \centering \includegraphics[angle=0,width=8cm]{Chapters/chapter11/gregory1_plot1.pdf} -\caption{Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data from \cite{Gregory1982}. Cubic spline fails to preserve monotonicity of the data.} +\caption[Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data]{Cubic spline (solid) and monotone quadratic spline (dashed) interpolating monotone data from \cite{Gregory1982}. Cubic spline fails to preserve monotonicity of the data.} \label{ch11:fig1} \end{figure} \begin{figure}[h] \centering \includegraphics[angle=00,width=8cm]{Chapters/chapter11/gregory1_plot2_b.pdf} -\caption{Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data from \cite{Gregory1982} with non-negative prescribed slopes. Despite non-negative slopes, Hermite cubic spline is not monotone.} +\caption[Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data]{Hermite cubic spline (solid) and Hermite rational spline interpolating monotone data from \cite{Gregory1982} with non-negative prescribed slopes. Despite non-negative slopes, Hermite cubic spline is not monotone.} \label{ch11:fig2} \end{figure} @@ -398,33 +398,33 @@ with $\hat y(k,l)$ being the unrestricted maximum likelihood estimator of $y_k\l %% %\renewcommand{\baselinestretch}{1} -%% \begin{table}[!h] -%% \begin{center} -%% \caption{The average CPU time (sec) of the serial PAVA, MLS and parallel MLS algorithms. } \label{ch11:table1} -%% \begin{tabular}{|r|r|r|r|} - -%% Data & PAVA & MLS & GPU MLS \\ \hline - -%% monotone increasing $f$ & & & \\ -%% $n=5\times 10^4$ &0.01&5& 0.092\\ -%% $n=10^5$ &0.03&40& 0.35\\ -%% $n=5\times 10^5$ &0.4&1001&8.6 \\ -%% $n=10^6$ &0.8& 5000& 38 \\ -%% $n=2 \times 10^6$ & 1.6 &-- &152 \\ -%% $n=10 \times 10^6$ & 2 &-- & 3500 \\ -%% $n=20 \times 10^6$ & 4.5&-- & --\\ -%% $n=50 \times 10^6$ & 12 &-- & --\\ -%% \hline - -%% constant or decreasing $f$ & & & \\ -%% $n=10^6$ &0.2&0.1& 38\\ -%% $n=10 \times 10^6$ &1.9& 1.9& 3500 \\ -%% $n=20 \times 10^6$ &3.5& 4.0&-- \\ -%% $n=50 \times 10^6$ &11& 11& -- \\ - -%% \end{tabular} -%% \end{center} -%% \end{table} +\begin{table}[!h] +\begin{center} +\caption{The average CPU time (sec) of the serial PAVA, MLS and parallel MLS algorithms. } \label{ch11:table1} +\begin{tabular}{|r|r|r|r|} + +Data & PAVA & MLS & GPU MLS \\ \hline + +monotone increasing $f$ & & & \\ +$n=5\times 10^4$ &0.01&5& 0.092\\ +$n=10^5$ &0.03&40& 0.35\\ +$n=5\times 10^5$ &0.4&1001&8.6 \\ +$n=10^6$ &0.8& 5000& 38 \\ +$n=2 \times 10^6$ & 1.6 &-- &152 \\ +$n=10 \times 10^6$ & 2 &-- & 3500 \\ +$n=20 \times 10^6$ & 4.5&-- & --\\ +$n=50 \times 10^6$ & 12 &-- & --\\ +\hline + +constant or decreasing $f$ & & & \\ +$n=10^6$ &0.2&0.1& 38\\ +$n=10 \times 10^6$ &1.9& 1.9& 3500 \\ +$n=20 \times 10^6$ &3.5& 4.0&-- \\ +$n=50 \times 10^6$ &11& 11& -- \\ + +\end{tabular} +\end{center} +\end{table} %% %\renewcommand{\baselinestretch}{2} @@ -491,6 +491,6 @@ with $\hat y(k,l)$ being the unrestricted maximum likelihood estimator of $y_k\l \section{Conclusion} \label{ch11:conc} We presented three GPU-based parallel algorithms for approximating monotone data: monotone quadratic spline, monotone Hermite rational spline and minimum lower sets algorithm for monotonizing noisy data. These tools are valuable in a number of applications that involve large data sets modeled by monotone nonlinear functions. -The source code of the package monospline is available from \texttt{www.deakin.edu.au/$\sim$ gleb/monospline.html } +The source code of the package monospline is available from \texttt{www.deakin.edu.au/$\sim$gleb/monospline.html } \putbib[Chapters/chapter11/biblio11]