X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/32eca9a71cb97b720b022d9fa6f8e753368a2243..e2f7ea69b2321fbf77291f35360751e460a99f44:/BookGPU/Chapters/chapter8/ch8.tex?ds=inline diff --git a/BookGPU/Chapters/chapter8/ch8.tex b/BookGPU/Chapters/chapter8/ch8.tex index 24a71bc..5d012eb 100644 --- a/BookGPU/Chapters/chapter8/ch8.tex +++ b/BookGPU/Chapters/chapter8/ch8.tex @@ -1,6 +1,6 @@ -\chapterauthor{Imen Chakroun}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\} -\chapterauthor{Nouredine Melab}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\} +\chapterauthor{Imen Chakroun and Nouredine Melab}{University of Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique, 59655 Villeneuve d'Ascq cedex, France\\} +%\chapterauthor{Nouredine Melab}{Universit\'e Lille 1 CNRS/LIFL, INRIA Lille Nord Europe, Cit\'e scientifique - 59655, Villeneuve d'Ascq cedex, France\\} \chapter{GPU-accelerated Tree-based Exact Optimization Methods} \label{ch8:GPU-accelerated-tree-based-exact-optimization-methods} @@ -254,11 +254,12 @@ In the following, we present how we dealt with the thread/branch divergence issu \vspace{-0.4cm} -\section{Thread divergence \index{Thread divergence}} +\section{Thread divergence} +\label{ch8:ThreadDivergence} \subsection{The thread divergence issue} -During the execution of an application on GPU, to each GPU multiprocessor is assigned one or more thread block(s) to execute. Those threads are partitioned into warps that get scheduled for execution. For each instruction of the flow, the multiprocessor selects a warp that is ready to be run. A warp executes one common instruction at a time, so full efficiency is realized when all threads of a warp agree on their execution path. In this chapter, the G80 model, in which a warp is a pool of 32 threads, is used. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken. Threads that are not on the taken path are disabled, and when all paths complete, the threads converge back to the same execution path. This phenomenon is called thread/branch divergence and often causes serious performance degradations. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjointed code paths. +During the execution of an application on GPU, to each GPU multiprocessor is assigned one or more thread block(s) to execute. Those threads are partitioned into warps that get scheduled for execution. For each instruction of the flow, the multiprocessor selects a warp that is ready to be run. A warp executes one common instruction at a time, so full efficiency is realized when all threads of a warp agree on their execution path. In this chapter, the G80 model, in which a warp is a pool of 32 threads, is used. If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken. Threads that are not on the taken path are disabled, and when all paths complete, the threads converge back to the same execution path. This phenomenon is called thread/branch divergence\index{Thread divergence} and often causes serious performance degradations. Branch divergence occurs only within a warp; different warps execute independently regardless of whether they are executing common or disjointed code paths. \vspace{0.2cm}