X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/32eca9a71cb97b720b022d9fa6f8e753368a2243..f917bf7fb163427e5d96188533e7d90d5a5d6846:/BookGPU/Chapters/chapter4/ch4.tex?ds=inline diff --git a/BookGPU/Chapters/chapter4/ch4.tex b/BookGPU/Chapters/chapter4/ch4.tex index d618753..e3dbfd5 100644 --- a/BookGPU/Chapters/chapter4/ch4.tex +++ b/BookGPU/Chapters/chapter4/ch4.tex @@ -1,4 +1,7 @@ -\chapterauthor{Gilles Perrot}{FEMTO-ST Institute} +\chapterauthor{Gilles Perrot}{Femto-ST Institute, University of Franche-Comte, France} + +\chapter{Implementing an efficient convolution operation on GPU} + %\newcommand{\kl}{\includegraphics[scale=0.6]{Chapters/chapter4/img/kernLeft.png}~} %\newcommand{\kr}{\includegraphics[scale=0.6]{Chapters/chapter4/img/kernRight.png}} @@ -29,10 +32,10 @@ %% } -\chapter{Implementing an efficient convolution \index{Convolution} operation on GPU} + \section{Overview} In this chapter, after dealing with GPU median filter implementations, -we propose to explore how convolutions can be implemented on modern +we propose to explore how convolutions\index{Convolution} can be implemented on modern GPUs. Widely used in digital image processing filters, the \emph{convolution operation} basically consists in taking the sum of products of elements from two 2-D functions, letting one of the two functions move over