X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/4932967a1c684dc3f7ed04c19144101278b79972..1ac5b5a535d9154c4f080e94f2f9a49ab6e299b7:/BookGPU/Chapters/chapter16/gpu.tex diff --git a/BookGPU/Chapters/chapter16/gpu.tex b/BookGPU/Chapters/chapter16/gpu.tex index bcfc686..f4f62f1 100644 --- a/BookGPU/Chapters/chapter16/gpu.tex +++ b/BookGPU/Chapters/chapter16/gpu.tex @@ -77,6 +77,36 @@ a preset tolerance~\cite{Golub:Book'96}. %% \end{algorithmic} %% \end{algorithm} +\begin{algorithm} +\caption{Standard GMRES\index{GMRES} algorithm.} \label{alg:GMRES} + \KwIn{ $ A \in \mathbb{R}^{N \times N}$, $b \in \mathbb{R}^N$, + and initial guess $x_0 \in \mathbb{R}^N$} + \KwOut{ $x \in \mathbb{R}^N$: $\| b - A x\|_2 < tol$} + + $r = b - A x_0$\; + $h_{1,0}=\left \| r \right \|_2$\; + $m=0$\; + + \While{$m < max\_iter$} { + $m = m+1$; + $v_{m} = r / h_{m,m-1}$\; + \label{line:mvp} $r = A v_m$\; + \For{$i = 1\ldots m$} { + $h_{i,m} = \langle v_i, r \rangle$\; + $r = r - h_{i,m} v_i$\; + } + $h_{m+1,m} = \left\| r \right\|_2$\label{line:newnorm} \; + %\STATE Generate Givens rotations to triangularize $\tilde{H}_m$ + %\STATE Apply Givens rotations on $h_{1,0}e_1$ to get residual $\epsilon$ + Compute the residual $\epsilon$\; + \If{$\epsilon < tol$} { + Solve the problem: minimize $\|b-Ax_m\|_2$\; + Return $x_m = x_0 + V_m y_m$\; + } + } +\end{algorithm} + + At a first glance, the cost of using standard GMRES directly to solve the Newton update in Eq.~\eqref{eq:Newton} seems to come mainly from two parts: the