X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/4932967a1c684dc3f7ed04c19144101278b79972..ecd01808b5702d940bd77107a2bf829d3832179b:/BookGPU/Chapters/chapter16/intro.tex diff --git a/BookGPU/Chapters/chapter16/intro.tex b/BookGPU/Chapters/chapter16/intro.tex index cbed054..dda1808 100644 --- a/BookGPU/Chapters/chapter16/intro.tex +++ b/BookGPU/Chapters/chapter16/intro.tex @@ -11,7 +11,7 @@ switching power converters. The new method first exploits the parallelisim in the envelope-following method and parallelize the Newton update solving part, which is the most computational expensive, in GPU platforms to boost the simulation performance. To further -speed up the iterative GMRES\index{GMRES} solving for Newton update equation in the +speed up the iterative GMRES\index{iterative method!GMRES} solving for Newton update equation in the envelope-following method, we apply the matrix-free\index{matrix-free} Krylov subspace\index{Krylov subspace} basis generation technique, which was previously used for RF simulation. @@ -76,13 +76,13 @@ next envelope step. {\resizebox{.9\textwidth}{!}{\input{./Chapters/chapter16/figures/envelope.pdf_t}} \label{fig:ef2} } \caption{Transient envelope-following\index{envelope-following} analysis. - (Both two figures reflect backward-Euler\index{backward-Euler} style envelope-following.)} + (Both two figures reflect backward Euler\index{Euler!backward Euler} style envelope-following.)} \label{fig:ef_intro} \end{figure} %\IEEEpubidadjcol -Also, iterative GMRES\index{GMRES} solver is typically used in the +Also, iterative GMRES\index{iterative method!GMRES} solver is typically used in the envelope-following method to compute the solution of Newton update due to its efficiency compared to direct LU\index{LU} method. However, as the Jacobian matrix\index{Jacobian matrix}