X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/4c5e6c1725249ae02b156277ef750a43f5d6144b..5dadaa83fd77112c7c6ace09f8ec840af2109d3e:/BookGPU/Chapters/chapter18/ch18.tex?ds=inline diff --git a/BookGPU/Chapters/chapter18/ch18.tex b/BookGPU/Chapters/chapter18/ch18.tex index fb3b560..d72e9a3 100755 --- a/BookGPU/Chapters/chapter18/ch18.tex +++ b/BookGPU/Chapters/chapter18/ch18.tex @@ -1,5 +1,5 @@ -\chapterauthor{Raphaël Couturier}{Femto-ST Institute, University of Franche-Comt\'{e}} -\chapterauthor{Christophe Guyeux}{Femto-ST Institute, University of Franche-Comt\'{e}} +\chapterauthor{Raphaël Couturier and Christophe Guyeux}{Femto-ST Institute, University of Franche-Comte, France} +%\chapterauthor{Christophe Guyeux}{Femto-ST Institute, University of Franche-Comt\'{e}} \chapter{Pseudorandom Number Generator on GPU} @@ -492,10 +492,15 @@ These experiments allow us to conclude that it is possible to generate a very large quantity of pseudorandom numbers statistically perfect with the xor-like version. +\section{Summary} - - +In this chapter, a PRNG based on chaotic iterations is presented. It is proven to be +chaotic according to Devaney. Efficient implementations on GPU +using xor-like PRNGs as input generators have shown that a very large quantity +of pseudorandom numbers can be generated per second (about 20Gsamples/s on a Tesla C1060), and +that these proposed PRNGs succeed to pass the hardest battery in TestU01, namely +the BigCrush.