X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/57e564506a8117605eca5b5d80c0f492e6121c12..cf0ee588a0ef05623f955938e81be1aa96c33f46:/BookGPU/Chapters/chapter16/gpu.tex?ds=sidebyside diff --git a/BookGPU/Chapters/chapter16/gpu.tex b/BookGPU/Chapters/chapter16/gpu.tex index 623ac81..bdd4ad0 100644 --- a/BookGPU/Chapters/chapter16/gpu.tex +++ b/BookGPU/Chapters/chapter16/gpu.tex @@ -5,7 +5,7 @@ In this section, we explain how to efficiently use matrix-free GMRES to solve the Newton update problems with implicit sensitivity calculation, i.e., the steps enclosed by the double dashed block -in Fig.~\ref{fig:ef_flow}. +in Figure~\ref{fig:ef_flow}. Then implementation issues of GPU acceleration will be discussed in detail. Finally, the Gear-2 integration is briefly introduced. @@ -225,7 +225,7 @@ Hence, in consideration of the serial nature of the trianularization, the small size of Hessenberg matrix, and the frequent inspection of values by host, it is preferable to allocate $\tilde{H}$ in CPU (host) memory. -As shown in Fig.~\ref{fig:gmres}, the memory copy from device to host +As shown in Figure~\ref{fig:gmres}, the memory copy from device to host is called each time when Arnoldi iteration generates a new vector and the orthogonalization produces the vector $h$.