X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/book_gpu.git/blobdiff_plain/65f8be28e79668334c6fcbc3a2af46a7c8a2eab0..55ce7168c6e69a2462d76c95dc9a5298ceedb04f:/BookGPU/Chapters/chapter9/ch9.tex diff --git a/BookGPU/Chapters/chapter9/ch9.tex b/BookGPU/Chapters/chapter9/ch9.tex index 0294f48..442c53a 100644 --- a/BookGPU/Chapters/chapter9/ch9.tex +++ b/BookGPU/Chapters/chapter9/ch9.tex @@ -99,7 +99,7 @@ solutions. The process is repeated until a stopping criterion is satisfied. \emph{Evolutionary algorithms}, \emph{swarm optimization}, and \emph{ant colonies} fall into this class. -\clearpage +%\clearpage \section{Parallel models for metaheuristics}\label{ch8:sec:paraMeta} Optimization problems, whether real-life or academic, are more often NP-hard and CPU time and/or memory consuming. Metaheuristics @@ -187,7 +187,7 @@ consuming. Unlike the two previous parallel models, the solution-level\index{metaheuristics!solution-level parallelism} parallel model is problem-dependent.} \end{itemize} -\clearpage +%\clearpage \section[Challenges for the design of GPU-based metaheuristics]{Challenges for the design of GPU-based\hfill\break metaheuristics} \label{ch8:sec:challenges} @@ -251,7 +251,7 @@ data (e.g., data for fitness evaluation that all threads concurrently access) on the constant memory, and the most accessed data structures (e.g., population of individuals for a CUDA thread block) on the shared memory. - +\clearpage \subsection{Threads synchronization} \index{GPU!threads synchronization} The thread synchronization issue is caused by both the GPU architecture and